Skip to main content

This may be a very naive idea (or may not work at all), but the dimensions of all the coke cans are fixed. So may be if the same image contains both a can and a bottle then you can tell them apart by size considerations (bottles are gonnagoing to be larger). Now because of missing depth (i.e. 3D mapping to 2D mapping) its possible that a bottle may appear shrunk and there isn't a size difference. You may recover some depth information using stereo-imaging (http://www.cs.cf.ac.uk/Dave/Vision_lecture/node11.htmlstereo-imaging) and then recover the original size.

This may be a very naive idea (or may not work at all), but the dimensions of all the coke cans are fixed. So may be if the same image contains both a can and a bottle then you can tell them apart by size considerations (bottles are gonna be larger). Now because of missing depth (i.e. 3D mapping to 2D mapping) its possible that a bottle may appear shrunk and there isn't a size difference. You may recover some depth information using stereo-imaging (http://www.cs.cf.ac.uk/Dave/Vision_lecture/node11.html) and then recover the original size.

This may be a very naive idea (or may not work at all), but the dimensions of all the coke cans are fixed. So may be if the same image contains both a can and a bottle then you can tell them apart by size considerations (bottles are going to be larger). Now because of missing depth (i.e. 3D mapping to 2D mapping) its possible that a bottle may appear shrunk and there isn't a size difference. You may recover some depth information using stereo-imaging and then recover the original size.

Post Migrated Away to dsp.stackexchange.com
Source Link
Sharad
  • 973
  • 11
  • 25

This may be a very naive idea (or may not work at all), but the dimensions of all the coke cans are fixed. So may be if the same image contains both a can and a bottle then you can tell them apart by size considerations (bottles are gonna be larger). Now because of missing depth (i.e. 3D mapping to 2D mapping) its possible that a bottle may appear shrunk and there isn't a size difference. You may recover some depth information using stereo-imaging (http://www.cs.cf.ac.uk/Dave/Vision_lecture/node11.html) and then recover the original size.