In newer versionversions of Pandas, inspired by the documentation (Viewing data): https://pandas.pydata.org/docs/user_guide/10min.html#viewing-data
df[df["colume_name"] == some_value] #Scalar, True/False.. df[df["colume_name"] == "some_value"] #String Combine multiple conditions by putting the clause in bracketsparentheses, ()(), and combining them with && and || (and/or). Like this:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])] Other filters
pandas.notna(df["colume_name"]) == True #Not# Not NaN df['colume_name'].str.contains("text") #Search# Search for "text" df['colume_name'].str.lower().str.contains("text") #Search# Search for "text", after converteringconverting to lowercase