I've been doing a lot of reading on this lately. I could be wrong, but I think I've got it...
The basic idea of a complement is straightforward: it's the remaining difference between one digit and another digit. For example, in our regular decimal notation, where we only have ten digits ranging from 0 to 9, we know that the difference between 9 and 3 is 6, so we can say that "the nines' complement of 3 is 6".
From there on out, there's something that I find gets easily confused, with very little help online: how we choose to use these complements to achieve subtraction or negative value representation is up to us! There are multiple methods, with two majorly accepted methods that both work, but with different pros and cons. The whole point of the complements is to be used in these methods, but "nine's complement" itself is not a subtraction or negative sign representation method, it's just the difference between nine and another digit.
The old-style "nines' complement" way of flipping a decimal number (nines' complement can also be called the "diminished radix complement" in the context of decimal, because we needed to find a complicated fancy way to say it's one less than ten) to perform addition of a negative value worked fine, but it gave two different values for 0 (+0 and -0), which was an expensive waste of memory on computing machines, and it also required additional tools and steps for carrying values, which added time or resource.
Later, someone realized that if you took the nines' complement and added 1 afterwards, and then dropped any carrying values beyond the most significant digit, you could also achieve negative value representation or subtraction, while only having one 0 value, and not needing to perform any carry-over at the end. (The only downside was that your distribution of values was uneven across negative and positive numbers.) Because the operation involved taking nines' complement and adding one to it, we called it "ten's complement" as a kind of shorthand. Notice the different placement of the apostrophe in the name. We have two different calculations that use the same name. The method "ten's complement" is not the same as "tens' complement". The former uses the second method I mentioned, while the latter uses the first (older) method I mentioned.
Then, to make the names simpler later, we said, "Hey, we call it ten's complement and it flips a base 10 number (decimal representation), so when we're using it we should just call it the "radix complement". And when we use nines' complement in base 10 we should just call it the "diminished radix complement". Again, this is confusing because we're reversing the way it actually happened in our terminology... ten's complement was actually named because it was "nines' complement plus one", but now we're calling it "ten's complement diminished" basically.
And then the same thing applies with ones' complement and two's complement for binary.