I need to add a "row number" to a dataframe, but this "row number" must restart for each new value in a column.
Let me show you an example:
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('test').getOrCreate() df = spark.createDataFrame([ ('2018-01-01', 'John', 0), ('2018-01-01', 'Paul', 1), ('2018-01-08', 'Paul', 3), ('2018-01-08', 'Pete', 4), ('2018-01-08', 'John', 3), ('2018-01-15', 'Mary', 6), ('2018-01-15', 'Pete', 6), ('2018-01-15', 'John', 6), ('2018-01-15', 'Paul', 6), ], ['str_date', 'name', 'value']) # Convert str_date to date: df = df.withColumn('date', to_date(df['str_date'])) \ .select(['date', 'name', 'value']) # Sort by name and date df.orderBy(['name', 'date']).show() ## +----------+----+-----+ ## | date|name|value| ## +----------+----+-----+ ## |2018-01-01|John| 0| ## |2018-01-08|John| 3| ## |2018-01-15|John| 6| ## |2018-01-15|Mary| 6| ## |2018-01-01|Paul| 1| ## |2018-01-08|Paul| 3| ## |2018-01-15|Paul| 6| ## |2018-01-08|Pete| 4| ## |2018-01-15|Pete| 6| ## +----------+----+-----+ So, what I need is to add a new column with the number of the row for each name:
# Expected result ## +----------+----+-----+------+ ## | date|name|value|rowNum| ## +----------+----+-----+------+ ## |2018-01-01|John| 0| 1| <- First row for 'John' ## |2018-01-08|John| 3| 2| ## |2018-01-15|John| 6| 3| ## |2018-01-15|Mary| 6| 1| <- First row for 'Mary' ## |2018-01-01|Paul| 1| 1| <- First row for 'Paul' ## |2018-01-08|Paul| 3| 2| ## |2018-01-15|Paul| 6| 3| ## |2018-01-08|Pete| 4| 1| <- First row for 'Pete' ## |2018-01-15|Pete| 6| 2| ## +----------+----+-----+------+ I've been trying with the Window function, but I'm stuck. Can you please help me?
Notes:
- It is guaranteed that the rows will be sorted (and, if they are not sorted, they will be sorted as part of the work pipeline)
- I'm using Spark 2.4.0