Skip to main content
Convert all the formulas to MathJax
Source Link
mousetail
  • 14.4k
  • 1
  • 42
  • 91
import Image x=p=141 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**19;p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int`7gjO_ao'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 

The byte count assumes that the escaped character \177`` is replaced with its literal equivalent (char 127).

import Image n=input() x=p=n*7|1 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**(n-1);p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int`7gjO_ao'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 

$$\frac{\pi}{4}=\sum\limits_{n=0}^\infty\frac{(-1)^n}{2n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+(\frac{1}{2}-\frac{1}{6})-(\frac{1}{6}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{14})-(\frac{1}{14}-\frac{1}{18})+(\frac{1}{18}-\frac{1}{22})-(\frac{1}{22}-\frac{1}{26})+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{3}-\frac{1}{15}+\frac{1}{35}-\frac{1}{63}+\frac{1}{99}-\frac{1}{143}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\sum\limits_{n=0}^\infty\frac{(-1)^n}{(2n+1)(2n+3)}$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+(\frac{1}{6}-\frac{1}{30})-(\frac{1}{30}-\frac{1}{70})+(\frac{1}{70}-\frac{1}{126})-(\frac{1}{126}-\frac{1}{198})+(\frac{1}{198}-\frac{1}{286})-\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{2}{15}-\frac{2}{105}+\frac{2}{315}-\frac{2}{693}+\frac{2}{1287}-\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+(\frac{1}{15}-\frac{1}{105})-(\frac{1}{105}-\frac{1}{315})+(\frac{1}{315}-\frac{1}{693})-(\frac{1}{693}-\frac{1}{1287})+\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{2}{35}-\frac{2}{315}+\frac{2}{1155}-\frac{2}{3003}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+(\frac{1}{35}-\frac{1}{315})-(\frac{1}{315}-\frac{1}{1155})+(\frac{1}{1155}-\frac{1}{3003})-\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+\frac{8}{315}-\frac{8}{3465}+\frac{8}{15015}-\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+\frac{4}{315}+(\frac{4}{315}-\frac{4}{3465})-(\frac{4}{3465}-\frac{4}{15015})+\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+\frac{4}{315}+\frac{8}{693}-\frac{8}{9009}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{2\cdot+3}+\frac{1}{3\cdot+5}+\frac{1}{5\cdot+7}+\frac{2^2}{3^2\cdot+5\cdot+7}+\frac{2^2}{3^2\cdot+7\cdot+11}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac1{2\cdot+3}+\frac1{3\cdot+5}+\frac{3}{3\cdot+5\cdot+7}+\frac{2^2\cdot+3}{3\cdot+5\cdot+7\cdot+9}+\frac{2^2\cdot+3\cdot+5}{3\cdot+5\cdot+7\cdot+9\cdot+11}+\dots$$

$$\frac{\pi}{2}=1+\frac{1}{3}+\frac{2}{3\cdot+5}+\frac{2\cdot+3}{3\cdot+5\cdot+7}+\frac{2^3\cdot+3}{3\cdot+5\cdot+7\cdot+9}+\frac{2^3\cdot+3\cdot+5}{3\cdot+5\cdot+7\cdot+9\cdot+11}+\dots$$

$$\frac{\pi}{2}=1+\frac{1}{3}+\frac{2}{3\cdot+5}+\frac{2\cdot+3}{3\cdot+5\cdot+7}+\frac{2\cdot+3\cdot+4}{3\cdot+5\cdot+7\cdot+9}+\frac{2\cdot+3\cdot+4\cdot+5}{3\cdot+5\cdot+7\cdot+9\cdot+11}+\dots$$

$$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}+\frac{2\cdot+3}{5\cdot+7}+\frac{2\cdot+3\cdot+4}{5\cdot+7\cdot+9}+\frac{2\cdot+3\cdot+4\cdot+5}{5\cdot+7\cdot+9\cdot+11}+\dots$$
$$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}(1+\frac{3}{7}+\frac{3\cdot+4}{7\cdot+9}+\frac{3\cdot+4\cdot+5}{7\cdot+9\cdot+11}+\dots$$
$$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}(1+\frac{3}{7}(1+\frac{4}{9}+\frac{4\cdot+5}{9\cdot+11}+\dots$$ $$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}(1+\frac{3}{7}(1+\frac{4}{9}(1+\frac{5}{11}(1+\dots+\frac{n}{2n+1}(1+\dots$$

$$x_{n}=1+\frac{n}{2n+1}x_{n+1}$$

import Image x=p=141 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**19;p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 

The byte count assumes that the escaped character \177 is replaced with its literal equivalent (char 127).

import Image n=input() x=p=n*7|1 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**(n-1);p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 



import Image x=p=141 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**19;p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_ao'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 

The byte count assumes that the escaped character `` is replaced with its literal equivalent (char 127).

import Image n=input() x=p=n*7|1 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**(n-1);p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_ao'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 

$$\frac{\pi}{4}=\sum\limits_{n=0}^\infty\frac{(-1)^n}{2n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+(\frac{1}{2}-\frac{1}{6})-(\frac{1}{6}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{14})-(\frac{1}{14}-\frac{1}{18})+(\frac{1}{18}-\frac{1}{22})-(\frac{1}{22}-\frac{1}{26})+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{3}-\frac{1}{15}+\frac{1}{35}-\frac{1}{63}+\frac{1}{99}-\frac{1}{143}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\sum\limits_{n=0}^\infty\frac{(-1)^n}{(2n+1)(2n+3)}$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+(\frac{1}{6}-\frac{1}{30})-(\frac{1}{30}-\frac{1}{70})+(\frac{1}{70}-\frac{1}{126})-(\frac{1}{126}-\frac{1}{198})+(\frac{1}{198}-\frac{1}{286})-\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{2}{15}-\frac{2}{105}+\frac{2}{315}-\frac{2}{693}+\frac{2}{1287}-\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+(\frac{1}{15}-\frac{1}{105})-(\frac{1}{105}-\frac{1}{315})+(\frac{1}{315}-\frac{1}{693})-(\frac{1}{693}-\frac{1}{1287})+\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{2}{35}-\frac{2}{315}+\frac{2}{1155}-\frac{2}{3003}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+(\frac{1}{35}-\frac{1}{315})-(\frac{1}{315}-\frac{1}{1155})+(\frac{1}{1155}-\frac{1}{3003})-\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+\frac{8}{315}-\frac{8}{3465}+\frac{8}{15015}-\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+\frac{4}{315}+(\frac{4}{315}-\frac{4}{3465})-(\frac{4}{3465}-\frac{4}{15015})+\dots$$ $$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{15}+\frac{1}{35}+\frac{4}{315}+\frac{8}{693}-\frac{8}{9009}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{2\cdot+3}+\frac{1}{3\cdot+5}+\frac{1}{5\cdot+7}+\frac{2^2}{3^2\cdot+5\cdot+7}+\frac{2^2}{3^2\cdot+7\cdot+11}+\dots$$

$$\frac{\pi}{4}=\frac{1}{2}+\frac1{2\cdot+3}+\frac1{3\cdot+5}+\frac{3}{3\cdot+5\cdot+7}+\frac{2^2\cdot+3}{3\cdot+5\cdot+7\cdot+9}+\frac{2^2\cdot+3\cdot+5}{3\cdot+5\cdot+7\cdot+9\cdot+11}+\dots$$

$$\frac{\pi}{2}=1+\frac{1}{3}+\frac{2}{3\cdot+5}+\frac{2\cdot+3}{3\cdot+5\cdot+7}+\frac{2^3\cdot+3}{3\cdot+5\cdot+7\cdot+9}+\frac{2^3\cdot+3\cdot+5}{3\cdot+5\cdot+7\cdot+9\cdot+11}+\dots$$

$$\frac{\pi}{2}=1+\frac{1}{3}+\frac{2}{3\cdot+5}+\frac{2\cdot+3}{3\cdot+5\cdot+7}+\frac{2\cdot+3\cdot+4}{3\cdot+5\cdot+7\cdot+9}+\frac{2\cdot+3\cdot+4\cdot+5}{3\cdot+5\cdot+7\cdot+9\cdot+11}+\dots$$

$$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}+\frac{2\cdot+3}{5\cdot+7}+\frac{2\cdot+3\cdot+4}{5\cdot+7\cdot+9}+\frac{2\cdot+3\cdot+4\cdot+5}{5\cdot+7\cdot+9\cdot+11}+\dots$$
$$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}(1+\frac{3}{7}+\frac{3\cdot+4}{7\cdot+9}+\frac{3\cdot+4\cdot+5}{7\cdot+9\cdot+11}+\dots$$
$$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}(1+\frac{3}{7}(1+\frac{4}{9}+\frac{4\cdot+5}{9\cdot+11}+\dots$$ $$\frac{\pi}{2}=1+\frac{1}{3}(1+\frac{2}{5}(1+\frac{3}{7}(1+\frac{4}{9}(1+\frac{5}{11}(1+\dots+\frac{n}{2n+1}(1+\dots$$

$$x_{n}=1+\frac{n}{2n+1}x_{n+1}$$

replaced http://chart.googleapis.com/ with https://chart.googleapis.com/
Source Link

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Csum%5Climits_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7B%28-1%29%5En%7D%7B2n%2B1%7D%3D1-%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B5%7D-%5Cfrac%7B1%7D%7B7%7D%2B%5Cfrac%7B1%7D%7B9%7D-%5Cfrac%7B1%7D%7B11%7D%2B%5Cfrac%7B1%7D%7B13%7D-%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%28%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B6%7D%29-%28%5Cfrac%7B1%7D%7B6%7D-%5Cfrac%7B1%7D%7B10%7D%29%2B%28%5Cfrac%7B1%7D%7B10%7D-%5Cfrac%7B1%7D%7B14%7D%29-%28%5Cfrac%7B1%7D%7B14%7D-%5Cfrac%7B1%7D%7B18%7D%29%2B%28%5Cfrac%7B1%7D%7B18%7D-%5Cfrac%7B1%7D%7B22%7D%29-%28%5Cfrac%7B1%7D%7B22%7D-%5Cfrac%7B1%7D%7B26%7D%29%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D-%5Cfrac%7B1%7D%7B63%7D%2B%5Cfrac%7B1%7D%7B99%7D-%5Cfrac%7B1%7D%7B143%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Csum%5Climits_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7B%28-1%29%5En%7D%7B%282n%2B1%29%282n%2B3%29%7D

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%28%5Cfrac%7B1%7D%7B6%7D-%5Cfrac%7B1%7D%7B30%7D%29-%28%5Cfrac%7B1%7D%7B30%7D-%5Cfrac%7B1%7D%7B70%7D%29%2B%28%5Cfrac%7B1%7D%7B70%7D-%5Cfrac%7B1%7D%7B126%7D%29-%28%5Cfrac%7B1%7D%7B126%7D-%5Cfrac%7B1%7D%7B198%7D%29%2B%28%5Cfrac%7B1%7D%7B198%7D-%5Cfrac%7B1%7D%7B286%7D%29-%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B2%7D%7B15%7D-%5Cfrac%7B2%7D%7B105%7D%2B%5Cfrac%7B2%7D%7B315%7D-%5Cfrac%7B2%7D%7B693%7D%2B%5Cfrac%7B2%7D%7B1287%7D-%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%28%5Cfrac%7B1%7D%7B15%7D-%5Cfrac%7B1%7D%7B105%7D%29-%28%5Cfrac%7B1%7D%7B105%7D-%5Cfrac%7B1%7D%7B315%7D%29%2B%28%5Cfrac%7B1%7D%7B315%7D-%5Cfrac%7B1%7D%7B693%7D%29-%28%5Cfrac%7B1%7D%7B693%7D-%5Cfrac%7B1%7D%7B1287%7D%29%2B%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B2%7D%7B35%7D-%5Cfrac%7B2%7D%7B315%7D%2B%5Cfrac%7B2%7D%7B1155%7D-%5Cfrac%7B2%7D%7B3003%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%28%5Cfrac%7B1%7D%7B35%7D-%5Cfrac%7B1%7D%7B315%7D%29-%28%5Cfrac%7B1%7D%7B315%7D-%5Cfrac%7B1%7D%7B1155%7D%29%2B%28%5Cfrac%7B1%7D%7B1155%7D-%5Cfrac%7B1%7D%7B3003%7D%29-%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%5Cfrac%7B8%7D%7B315%7D-%5Cfrac%7B8%7D%7B3465%7D%2B%5Cfrac%7B8%7D%7B15015%7D-%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%5Cfrac%7B4%7D%7B315%7D%2B%28%5Cfrac%7B4%7D%7B315%7D-%5Cfrac%7B4%7D%7B3465%7D%29-%28%5Cfrac%7B4%7D%7B3465%7D-%5Cfrac%7B4%7D%7B15015%7D%29%2B%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%5Cfrac%7B4%7D%7B315%7D%2B%5Cfrac%7B8%7D%7B693%7D-%5Cfrac%7B8%7D%7B9009%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%5Ccdot+3%7D%2B%5Cfrac%7B1%7D%7B3%5Ccdot+5%7D%2B%5Cfrac%7B1%7D%7B5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E2%7D%7B3%5E2%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E2%7D%7B3%5E2%5Ccdot+7%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac1%7B2%5Ccdot+3%7D%2B%5Cfrac1%7B3%5Ccdot+5%7D%2B%5Cfrac%7B3%7D%7B3%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E2%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5E2%5Ccdot+3%5Ccdot+5%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B3%5Ccdot+5%7D%2B%5Cfrac%7B2%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E3%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5E3%5Ccdot+3%5Ccdot+5%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B3%5Ccdot+5%7D%2B%5Cfrac%7B2%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%5Ccdot+5%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%2B%5Cfrac%7B2%5Ccdot+3%7D%7B5%5Ccdot+7%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%7D%7B5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%5Ccdot+5%7D%7B5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots
http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%281%2B%5Cfrac%7B3%7D%7B7%7D%2B%5Cfrac%7B3%5Ccdot+4%7D%7B7%5Ccdot+9%7D%2B%5Cfrac%7B3%5Ccdot+4%5Ccdot+5%7D%7B7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots
http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%281%2B%5Cfrac%7B3%7D%7B7%7D%281%2B%5Cfrac%7B4%7D%7B9%7D%2B%5Cfrac%7B4%5Ccdot+5%7D%7B9%5Ccdot+11%7D%2B%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%281%2B%5Cfrac%7B3%7D%7B7%7D%281%2B%5Cfrac%7B4%7D%7B9%7D%281%2B%5Cfrac%7B5%7D%7B11%7D%281%2B%5Cdots%2B%5Cfrac%7Bn%7D%7B2n%2B1%7D%281%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=x_%7Bn%7D%3D1%2B%5Cfrac%7Bn%7D%7B2n%2B1%7Dx_%7Bn%2B1%7D

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Csum%5Climits_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7B%28-1%29%5En%7D%7B2n%2B1%7D%3D1-%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B5%7D-%5Cfrac%7B1%7D%7B7%7D%2B%5Cfrac%7B1%7D%7B9%7D-%5Cfrac%7B1%7D%7B11%7D%2B%5Cfrac%7B1%7D%7B13%7D-%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%28%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B6%7D%29-%28%5Cfrac%7B1%7D%7B6%7D-%5Cfrac%7B1%7D%7B10%7D%29%2B%28%5Cfrac%7B1%7D%7B10%7D-%5Cfrac%7B1%7D%7B14%7D%29-%28%5Cfrac%7B1%7D%7B14%7D-%5Cfrac%7B1%7D%7B18%7D%29%2B%28%5Cfrac%7B1%7D%7B18%7D-%5Cfrac%7B1%7D%7B22%7D%29-%28%5Cfrac%7B1%7D%7B22%7D-%5Cfrac%7B1%7D%7B26%7D%29%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D-%5Cfrac%7B1%7D%7B63%7D%2B%5Cfrac%7B1%7D%7B99%7D-%5Cfrac%7B1%7D%7B143%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Csum%5Climits_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7B%28-1%29%5En%7D%7B%282n%2B1%29%282n%2B3%29%7D

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%28%5Cfrac%7B1%7D%7B6%7D-%5Cfrac%7B1%7D%7B30%7D%29-%28%5Cfrac%7B1%7D%7B30%7D-%5Cfrac%7B1%7D%7B70%7D%29%2B%28%5Cfrac%7B1%7D%7B70%7D-%5Cfrac%7B1%7D%7B126%7D%29-%28%5Cfrac%7B1%7D%7B126%7D-%5Cfrac%7B1%7D%7B198%7D%29%2B%28%5Cfrac%7B1%7D%7B198%7D-%5Cfrac%7B1%7D%7B286%7D%29-%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B2%7D%7B15%7D-%5Cfrac%7B2%7D%7B105%7D%2B%5Cfrac%7B2%7D%7B315%7D-%5Cfrac%7B2%7D%7B693%7D%2B%5Cfrac%7B2%7D%7B1287%7D-%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%28%5Cfrac%7B1%7D%7B15%7D-%5Cfrac%7B1%7D%7B105%7D%29-%28%5Cfrac%7B1%7D%7B105%7D-%5Cfrac%7B1%7D%7B315%7D%29%2B%28%5Cfrac%7B1%7D%7B315%7D-%5Cfrac%7B1%7D%7B693%7D%29-%28%5Cfrac%7B1%7D%7B693%7D-%5Cfrac%7B1%7D%7B1287%7D%29%2B%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B2%7D%7B35%7D-%5Cfrac%7B2%7D%7B315%7D%2B%5Cfrac%7B2%7D%7B1155%7D-%5Cfrac%7B2%7D%7B3003%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%28%5Cfrac%7B1%7D%7B35%7D-%5Cfrac%7B1%7D%7B315%7D%29-%28%5Cfrac%7B1%7D%7B315%7D-%5Cfrac%7B1%7D%7B1155%7D%29%2B%28%5Cfrac%7B1%7D%7B1155%7D-%5Cfrac%7B1%7D%7B3003%7D%29-%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%5Cfrac%7B8%7D%7B315%7D-%5Cfrac%7B8%7D%7B3465%7D%2B%5Cfrac%7B8%7D%7B15015%7D-%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%5Cfrac%7B4%7D%7B315%7D%2B%28%5Cfrac%7B4%7D%7B315%7D-%5Cfrac%7B4%7D%7B3465%7D%29-%28%5Cfrac%7B4%7D%7B3465%7D-%5Cfrac%7B4%7D%7B15015%7D%29%2B%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B15%7D%2B%5Cfrac%7B1%7D%7B35%7D%2B%5Cfrac%7B4%7D%7B315%7D%2B%5Cfrac%7B8%7D%7B693%7D-%5Cfrac%7B8%7D%7B9009%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%5Ccdot+3%7D%2B%5Cfrac%7B1%7D%7B3%5Ccdot+5%7D%2B%5Cfrac%7B1%7D%7B5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E2%7D%7B3%5E2%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E2%7D%7B3%5E2%5Ccdot+7%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac1%7B2%5Ccdot+3%7D%2B%5Cfrac1%7B3%5Ccdot+5%7D%2B%5Cfrac%7B3%7D%7B3%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E2%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5E2%5Ccdot+3%5Ccdot+5%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B3%5Ccdot+5%7D%2B%5Cfrac%7B2%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5E3%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5E3%5Ccdot+3%5Ccdot+5%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B3%5Ccdot+5%7D%2B%5Cfrac%7B2%5Ccdot+3%7D%7B3%5Ccdot+5%5Ccdot+7%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%5Ccdot+5%7D%7B3%5Ccdot+5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%2B%5Cfrac%7B2%5Ccdot+3%7D%7B5%5Ccdot+7%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%7D%7B5%5Ccdot+7%5Ccdot+9%7D%2B%5Cfrac%7B2%5Ccdot+3%5Ccdot+4%5Ccdot+5%7D%7B5%5Ccdot+7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots
http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%281%2B%5Cfrac%7B3%7D%7B7%7D%2B%5Cfrac%7B3%5Ccdot+4%7D%7B7%5Ccdot+9%7D%2B%5Cfrac%7B3%5Ccdot+4%5Ccdot+5%7D%7B7%5Ccdot+9%5Ccdot+11%7D%2B%5Cdots
http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%281%2B%5Cfrac%7B3%7D%7B7%7D%281%2B%5Cfrac%7B4%7D%7B9%7D%2B%5Cfrac%7B4%5Ccdot+5%7D%7B9%5Ccdot+11%7D%2B%5Cdots http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=%5Cfrac%7B%5Cpi%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B3%7D%281%2B%5Cfrac%7B2%7D%7B5%7D%281%2B%5Cfrac%7B3%7D%7B7%7D%281%2B%5Cfrac%7B4%7D%7B9%7D%281%2B%5Cfrac%7B5%7D%7B11%7D%281%2B%5Cdots%2B%5Cfrac%7Bn%7D%7B2n%2B1%7D%281%2B%5Cdots

http://chart.googleapis.com/chart?cht=tx&chf=bg,s,FFFFFF00&chl=x_%7Bn%7D%3D1%2B%5Cfrac%7Bn%7D%7B2n%2B1%7Dx_%7Bn%2B1%7D



a bit late, but an improvement nonetheless
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142

Python - 235, 217 bytes

from PIL import Image,ImageDraw as D x=p=141 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**19;p-=2 for c in str(x):[D.Draw(i).line((-j%3*4%7+p,j+1,-j%3*4%5+p,j+j%3),1&ord('w\22k[\36]}\23\177_'[int(c)])>>j-1)for j in range(1,8)];p+=7 i.show() 
import Image x=p=141 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**19;p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 

The byte count assumes that the escaped characters in the stringcharacter w\22k[\36]}\23\177_\177 areis replaced with theirits literal equivalentsequivalent (char 18, char 30, char 19, and char 127 respectively).

from PIL import Image,ImageDraw as D n=input() x=p=n*7|1 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**(n-1);p-=2 for c in str(x):[D.Draw(i).line((-j%3*4%7+p,j+1,-j%3*4%5+p,j+j%3),1&ord('w\22k[\36]}\23\177_'[int(c)])>>j-1)for j in range(1,8)];p+=7 i.show() 
import Image n=input() x=p=n*7|1 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**(n-1);p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 
while~-p:x=p/2*x/p+2*10**19;p-=2 
while~-p:x=p/2*x/p+2*10**19;p-=2 

PIL is used for image generation, because it's the most convenient library that I know of. A blank 141×11 black and white bitmap is created, and then white lines are drawn on it in a seven-segment fashion, one pixel at a time. The positions required to draw each segment are stored in a bitmask string, with bits corresponding to the following positions:

 000 2 1 2 1 333 5 4 5 4 666 
 000 3 5 3 5 111 4 6 4 6 222 

The bit of magic (-j%3*4%7+p,j+1,j%7/5*4-j%3*4%5+p~j%7/4*~j/7+p,j+j%3j%7*3%14%8+j%14/10+2) produces the x1, y1, x2, y2 tuple for each line segment. Iterated overpixel in the following order j=1..7(base-18):

(1, 2, 3, 2) (4, 3, 4, 4) (0, 4, 0, 3) (1, 5, 3, 5) (4, 6, 4, 7) (0, 7, 0, 6) (1, 8, 3, 8) 

which is exactly where the lines should be.

(2, 2), (2, 5), (2, 8), (1, 3), (1, 6), (5, 3), (5, 6), (3, 2), (3, 5), (3, 8), (1, 4), (1, 7), (5, 4), (5, 7), (4, 2), (4, 5), (4, 8) 07e 3 5 a c 18f 4 6 b d 29g 

Python - 235 bytes

from PIL import Image,ImageDraw as D x=p=141 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**19;p-=2 for c in str(x):[D.Draw(i).line((-j%3*4%7+p,j+1,-j%3*4%5+p,j+j%3),1&ord('w\22k[\36]}\23\177_'[int(c)])>>j-1)for j in range(1,8)];p+=7 i.show() 

The byte count assumes that the escaped characters in the string w\22k[\36]}\23\177_ are replaced with their literal equivalents (char 18, char 30, char 19, and char 127 respectively).

from PIL import Image,ImageDraw as D n=input() x=p=n*7|1 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**(n-1);p-=2 for c in str(x):[D.Draw(i).line((-j%3*4%7+p,j+1,-j%3*4%5+p,j+j%3),1&ord('w\22k[\36]}\23\177_'[int(c)])>>j-1)for j in range(1,8)];p+=7 i.show() 
while~-p:x=p/2*x/p+2*10**19;p-=2 

PIL is used for image generation, because it's the most convenient library that I know of. A blank 141×11 black and white bitmap is created, and then white lines are drawn on it in a seven-segment fashion. The positions required to draw each segment are stored in a bitmask string, with bits corresponding to the following positions:

 000 2 1 2 1 333 5 4 5 4 666 

The bit of magic (-j%3*4%7+p,j+1,-j%3*4%5+p,j+j%3) produces the x1, y1, x2, y2 tuple for each line segment. Iterated over j=1..7:

(1, 2, 3, 2) (4, 3, 4, 4) (0, 4, 0, 3) (1, 5, 3, 5) (4, 6, 4, 7) (0, 7, 0, 6) (1, 8, 3, 8) 

which is exactly where the lines should be.

Python, 217 bytes

import Image x=p=141 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**19;p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 

The byte count assumes that the escaped character \177 is replaced with its literal equivalent (char 127).

import Image n=input() x=p=n*7|1 i=Image.new('1',(x,11)) while~-p:x=p/2*x/p+2*10**(n-1);p-=2 for c in str(x):[i.putpixel((j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2),1&ord('}`7gjO_a\177o'[int(c)])>>j%7)for j in range(17)];p+=7 i.show() 
while~-p:x=p/2*x/p+2*10**19;p-=2 

PIL is used for image generation, because it's the most convenient library that I know of. A blank 141×11 black and white bitmap is created, and then white lines are drawn on it in a seven-segment fashion, one pixel at a time. The positions required to draw each segment are stored in a bitmask string, with bits corresponding to the following positions:

 000 3 5 3 5 111 4 6 4 6 222 

The bit of magic (j%7/5*4-~j%7/4*~j/7+p,j%7*3%14%8+j%14/10+2) produces the each pixel in the following order (base-18):

(2, 2), (2, 5), (2, 8), (1, 3), (1, 6), (5, 3), (5, 6), (3, 2), (3, 5), (3, 8), (1, 4), (1, 7), (5, 4), (5, 7), (4, 2), (4, 5), (4, 8) 07e 3 5 a c 18f 4 6 b d 29g 
deleted 18 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
deleted 6 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
x = 2 + x/2 implies x = 4. That's what I get for not double-checking.
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
deleted 18 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
added 2 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
added 4 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
added 314 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
added 8970 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
added 1376 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
added 563 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
added 186 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
deleted 3 characters in body
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading
Source Link
primo
  • 33.7k
  • 5
  • 63
  • 142
Loading