# [Alchemy](http://esolangs.org/wiki/Alchemy), 1013 bytes Fixate 1 dr Eulerius (1 oz Alkahest): Bius Fixate 1 dr Periphius (1 oz Alkahest): Cius Fuse 1 dr Bius, 1 dr Bius, 1 dr Cius, 1 dr Cius (4 oz Alkahest): Zius Fuse 1 dr Zius, 1 dr Bius (2 oz Alkahest): Hium Fuse 1 dr Cius, 1 dr Periphius, 1 dr Periphius (3 oz Alkahest): Dius Project 1 oz Hium, 1 oz Dius (3 oz Alkahest): Eium Fuse 1 dr Zius, 1 dr Cius (2 oz Alkahest): Lium Project 1 oz Lium, 1 dr Cius (3 oz Alkahest): Oium Fuse 1 dr Bius, 1 dr Cius, 1 dr Eulerius, 1 dr Eulerius (4 oz Alkahest): Cium Ferment 1 dr Zius, 1 dr Periphius (2 oz Alkahest): Sium Project 1 dr Cium, 1 dr Cium (4 oz Alkahest): Wium Ferment 1 dr Wium, 1 dr Aquaphidium (4 oz Alkahest): Wium Project 1 dr Oium, 1 dr Cius (3 oz Alkahest): Rium Ferment 1 dr Eium, 1 dr Aquasoothius (3 oz Alkahest): Dium Project 1 dr Sium, 1 dr Aquasoothius (3 oz Alkahest): Xium Multiply 1 oz Hium, 1 oz Eium, 1 oz Lium, 1 oz Lium, 1 oz Oium, 1 oz Cium, 1 oz Sium, 1 oz Wium, 1 oz Oium, 1 oz Rium, 1 oz Lium, 1 oz Dium, 1 oz Xium (26 oz Alkahest): Scribius This is one weird language. The above is probably not entirely optimal, but I also don't think that the optimal solution will be significantly shorter (I did try to obtain the numbers as efficiently as possible locally). Also, the language spec seems to imply that the amounts of the reagents should actually match up (when multiplied by their "substance numbers" which are the sums of their ASCII values...), but [the only interpreter I could find](https://bitbucket.org/shadwick/alchemy/wiki/Home) doesn't seem to be checking that. In fact, the interpreter had a memory corruption bug which I had to fix to run the above code. Some explanation would probably be helpful. Let `e`, `π`, and `φ` have their usual meanings. Then the above code translates roughly to the following pseudocode: b = floor(e) // 2 c = floor(π) // 3 z = b * b * c * c // 36 H = z * b // 72 d = c * π * π // 29.6088 E = H + d // 101.6088 L = z * c // 108 O = L + c // 111 C = 2 * 3 * e * e // 44.3343 S = z - π // 32.8584 W = C + C // 88.6686 W = W - φ // 87.0506 R = O + c // 114 D = E - 1 // 100 X = S + 1 // 33 Print( H, E, L, L, O, C, S, W, O, R, L, D, X )