# [Alchemy](http://esolangs.org/wiki/Alchemy), 1013 bytes

 Fixate 1 dr Eulerius (1 oz Alkahest): Bius
 Fixate 1 dr Periphius (1 oz Alkahest): Cius
 Fuse 1 dr Bius, 1 dr Bius, 1 dr Cius, 1 dr Cius (4 oz Alkahest): Zius
 Fuse 1 dr Zius, 1 dr Bius (2 oz Alkahest): Hium
 Fuse 1 dr Cius, 1 dr Periphius, 1 dr Periphius (3 oz Alkahest): Dius
 Project 1 oz Hium, 1 oz Dius (3 oz Alkahest): Eium
 Fuse 1 dr Zius, 1 dr Cius (2 oz Alkahest): Lium
 Project 1 oz Lium, 1 dr Cius (3 oz Alkahest): Oium
 Fuse 1 dr Bius, 1 dr Cius, 1 dr Eulerius, 1 dr Eulerius (4 oz Alkahest): Cium
 Ferment 1 dr Zius, 1 dr Periphius (2 oz Alkahest): Sium
 Project 1 dr Cium, 1 dr Cium (4 oz Alkahest): Wium
 Ferment 1 dr Wium, 1 dr Aquaphidium (4 oz Alkahest): Wium
 Project 1 dr Oium, 1 dr Cius (3 oz Alkahest): Rium
 Ferment 1 dr Eium, 1 dr Aquasoothius (3 oz Alkahest): Dium
 Project 1 dr Sium, 1 dr Aquasoothius (3 oz Alkahest): Xium
 Multiply 1 oz Hium, 1 oz Eium, 1 oz Lium, 1 oz Lium, 1 oz Oium, 1 oz Cium, 1 oz Sium, 1 oz Wium, 1 oz Oium, 1 oz Rium, 1 oz Lium, 1 oz Dium, 1 oz Xium (26 oz Alkahest): Scribius

This is one weird language. The above is probably not entirely optimal, but I also don't think that the optimal solution will be significantly shorter (I did try to obtain the numbers as efficiently as possible locally). Also, the language spec seems to imply that the amounts of the reagents should actually match up (when multiplied by their "substance numbers" which are the sums of their ASCII values...), but [the only interpreter I could find](https://bitbucket.org/shadwick/alchemy/wiki/Home) doesn't seem to be checking that.

In fact, the interpreter had a memory corruption bug which I had to fix to run the above code.

Some explanation would probably be helpful. Let `e`, `π`, and `φ` have their usual meanings. Then the above code translates roughly to the following pseudocode:

 b = floor(e) // 2
 c = floor(π) // 3
 z = b * b * c * c // 36
 H = z * b // 72
 d = c * π * π // 29.6088
 E = H + d // 101.6088
 L = z * c // 108
 O = L + c // 111
 C = 2 * 3 * e * e // 44.3343
 S = z - π // 32.8584
 W = C + C // 88.6686
 W = W - φ // 87.0506
 R = O + c // 114
 D = E - 1 // 100
 X = S + 1 // 33
 Print( H, E, L, L, O, C, S, W, O, R, L, D, X )