You're experiencing a basic property of the DFT of a real input signal, that it is conjugate symmetric:
Let $x[n], \, n = 0\cdots N-1$ be a real-valued sequence, then the DFT coefficients are conjugate symmetric: $$X[k] = \overline{X[N-k]},\,k = 0\cdots N-1$$
For analysis, we usually discard half of the spectrum because the information is therefore redundant:
figure(2) S_abs = S_abs(1:(l+1)/2); f = (0:(L-1)/2)*fs/L; plot(f,S_abs)
See also this answer for correct scaling of even and odd length DFT.
Proof of conjugate symmetry:
\begin{align} X[N-k] &= \sum_{n=0}^{N-1}x[n]e^{-j2\pi \frac{N-k}{N}n}\\ &= \sum_{n=0}^{N-1}x[n]e^{+j2\pi \frac{k-N}{N}n}\\ &= \sum_{n=0}^{N-1}x[n]e^{+j2\pi \frac{k}{N}n}e^{-j2\pi n}\quad \left(e^{-j2\pi n} = 1\right)\\ &= \sum_{n=0}^{N-1}x[n]\overline{e^{-j2\pi \frac{k}{N}n}}\\ &= \sum_{n=0}^{N-1}\overline{x[n]e^{-j2\pi \frac{k}{N}n}}\\ &= \overline{X[k]} \end{align}
Where the last step stems from the fact that $x[n]$ is real so $x[n] = \overline{x[n]}$