Skip to content

Tags: scikit-learn-contrib/scikit-matter

Tags

v0.3.2

Toggle v0.3.2's commit message
Release v0.3.2 

v0.3.1

Toggle v0.3.1's commit message
Release v0.3.1 

v0.3

Toggle v0.3's commit message
Release v0.3 

v0.2.0

Toggle v0.2.0's commit message
Release version 0.2.0 

v0.1.4

Toggle v0.1.4's commit message
Release version 0.1.4 

v0.1.3

Toggle v0.1.3's commit message
release for the submission of the paper 

skmatter-v0.1.3

Toggle skmatter-v0.1.3's commit message
refactor to scikit-matter 

v0.1.2

Toggle v0.1.2's commit message
Release version 0.1.2 

v0.1.1

Toggle v0.1.1's commit message
Release version 0.1.1 

v0.1.0

Toggle v0.1.0's commit message

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature. The key has expired.
Feat/kpcovr fitted regressor (#113) * Add shape checking utilities for coefficients of precomputed kernel regressors * Modify instantiation and fit call of KPCovR to accept pre-fitted regressors as in PCovR * Update KPCovR tests to be compatible with new regressor usage * Update PCovR example notebook to be compatible with new regressor usage * Reorganize regressor usage to pull kernel parameters directly from the regressor; use None as the default argument for the regressor * Pull alpha from the KPCovR regressor * Make regressor default argument None, assign default within __init__ * Change inversions to use least squares with singular value cutoff based on tol instead of the regularization * Compute Yhat directly from the dual coefficients * Move regressor checking to occur immediately * Add more details about pre-fitted regressors to PCovR and KPCovR documentation * Use KPCovR tolerance in matrix inversion instead of regularization * Add tests for KPCovR to cover the pre-fitted regressors * Add PCovR test to check for regressor modifications * Move default regressor assignment to fit and accept regressor params * Reorganize KPCovR regressor infrastructure * Make PCovR example compatible with new KPCovR regressor infrastructure * Add PCovR test for None regressor * Modify KPCovR tests for compatibility with new regressor infrastructure * Add KPCovR test for None regressor * Fix KPCovR docstring example * Consolidate regressor checking * Simplify tests for pre-fitted regressors * Negate KPCovR score according to sklearn guidelines