Skip to main content
edited body
Source Link
Tito Piezas III
  • 61.1k
  • 8
  • 135
  • 321

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

Then the four roots are,

$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)\tag{3a}$$

or alternatively,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(\color{blue}{v_1^{1/3}+v_2^{1/3}}\right)\tag{3b}$$

with $v_i$$v_1$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

and a chosen cube root of unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, use $\zeta_3=1$, but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

Then the four roots are,

$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)\tag{3a}$$

or alternatively,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(\color{blue}{v_1^{1/3}+v_2^{1/3}}\right)\tag{3b}$$

with $v_i$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

and a chosen cube root of unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, use $\zeta_3=1$, but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

Then the four roots are,

$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)\tag{3a}$$

or alternatively,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(\color{blue}{v_1^{1/3}+v_2^{1/3}}\right)\tag{3b}$$

with $v_1$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

and a chosen cube root of unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, use $\zeta_3=1$, but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

Clarified in response to question.
Source Link
Tito Piezas III
  • 61.1k
  • 8
  • 135
  • 321

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

Then the four roots are,

$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)$$$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)\tag{3a}$$

or alternatively,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(\color{blue}{v_1^{1/3}+v_2^{1/3}}\right)\tag{3b}$$

with $v_1$$v_i$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

and a chosen cube root of unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, use $\zeta_3=1$, but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

Then the four roots are,

$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)$$

with $v_1$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

and a chosen cube root of unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, use $\zeta_3=1$, but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

Then the four roots are,

$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)\tag{3a}$$

or alternatively,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(\color{blue}{v_1^{1/3}+v_2^{1/3}}\right)\tag{3b}$$

with $v_i$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

and a chosen cube root of unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, use $\zeta_3=1$, but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

Qualified regarding zeta3
Source Link
Tito Piezas III
  • 61.1k
  • 8
  • 135
  • 321

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

thenThen the four roots are,

$$x_{1,2} = -\tfrac{1}{4}a+\tfrac{1}{2}\sqrt{u}\pm\tfrac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\sqrt{u}}}\tag1$$$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\tfrac{1}{4}a-\tfrac{1}{2}\sqrt{u}\pm\tfrac{1}{4}\sqrt{3a^2-8b-4u-\frac{-a^3+4ab-8c}{\sqrt{u}}}\tag2$$$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4} +\frac{-2b+v_1^{1/3}+v_2^{1/3}}{3}$$$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)$$

and thewith $v_i$ are the two roots$v_1$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

Note: If you prefer only one and a chosen cube root extractionof unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, you can use the RHS of the relation$\zeta_3=1$,

$$v_1^{1/3}+v_2^{1/3} = \color{brown}{v_1^{1/3}}+\frac{b^2 - 3 a c + 12 d}{\color{brown}{v_1^{1/3}}}$$ but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

then,

$$x_{1,2} = -\tfrac{1}{4}a+\tfrac{1}{2}\sqrt{u}\pm\tfrac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\sqrt{u}}}\tag1$$

$$x_{3,4} = -\tfrac{1}{4}a-\tfrac{1}{2}\sqrt{u}\pm\tfrac{1}{4}\sqrt{3a^2-8b-4u-\frac{-a^3+4ab-8c}{\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4} +\frac{-2b+v_1^{1/3}+v_2^{1/3}}{3}$$

and the $v_i$ are the two roots of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

Note: If you prefer only one cube root extraction, you can use the RHS of the relation,

$$v_1^{1/3}+v_2^{1/3} = \color{brown}{v_1^{1/3}}+\frac{b^2 - 3 a c + 12 d}{\color{brown}{v_1^{1/3}}}$$

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

We can reduce the problem of solving the general quartic to merely solving a quadratic. Given,

$$x^4+ax^3+bx^2+cx+d=0$$

Then the four roots are,

$$x_{1,2} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}+\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag1$$

$$x_{3,4} = -\frac{a}{4}+\frac{\color{red}\pm\sqrt{u}}{2}\color{blue}-\frac{1}{4}\sqrt{3a^2-8b-4u+\frac{-a^3+4ab-8c}{\color{red}\pm\sqrt{u}}}\tag2$$

where,

$$u = \frac{a^2}{4}-\frac{2b}{3} +\frac{1}{3}\left(v_1^{1/3}\zeta_3+\frac{b^2 - 3 a c + 12 d}{v_1^{1/3}\zeta_3}\right)$$

with $v_1$ any non-zero root of the quadratic,

$$v^2 + (-2 b^3 + 9 a b c - 27 c^2 - 27 a^2 d + 72 b d)v + (b^2 - 3 a c + 12 d)^3 = 0$$

and a chosen cube root of unity $\zeta_3^3 = 1$ such that $u$ is also non-zero. (Normally, use $\zeta_3=1$, but not when $a^3-4ab+8c = 0$.)

P.S. This is essentially the method used by Mathematica, though much simplified for aesthetics.

Source Link
Tito Piezas III
  • 61.1k
  • 8
  • 135
  • 321
Loading