Skip to main content
There was no full stop
Source Link
Parcly Taxel
  • 106.4k
  • 21
  • 123
  • 210

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is $2$, then take shorter and shorter stair-steps and the length is $2$ but your path approaches the diagonal. SoSo $\sqrt{2}=2$ In.

In both cases, you are approaching the area but not the path length. YouYou can make this more rigorous by breaking into increments and following the proof of the Riemann sum. TheThe difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: makingmaking the square more explicit. Imagine dividing the diagonal into $n$ segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{2n^2}$ which converges to $0$. The path length is $n \frac{2}{n}$, which converges even more nicely to $2$.

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is $2$, then take shorter and shorter stair-steps and the length is $2$ but your path approaches the diagonal. So $\sqrt{2}=2$ In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into $n$ segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{2n^2}$ which converges to $0$. The path length is $n \frac{2}{n}$, which converges even more nicely to $2$.

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is $2$, then take shorter and shorter stair-steps and the length is $2$ but your path approaches the diagonal. So $\sqrt{2}=2$.

In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into $n$ segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{2n^2}$ which converges to $0$. The path length is $n \frac{2}{n}$, which converges even more nicely to $2$.

added 10 characters in body
Source Link
InsideOut
  • 7k
  • 3
  • 18
  • 37

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is 2$2$, then take shorter and shorter stair-steps and the length is 2$2$ but your path approaches the diagonal. So $\sqrt{2}=2$ In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into n$n$ segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{2n^2}$ which converges to 0$0$. The path length is $n \frac{2}{n}$, which converges even more nicely to 2$2$.

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is 2, then take shorter and shorter stair-steps and the length is 2 but your path approaches the diagonal. So $\sqrt{2}=2$ In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into n segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{2n^2}$ which converges to 0. The path length is $n \frac{2}{n}$, which converges even more nicely to 2.

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is $2$, then take shorter and shorter stair-steps and the length is $2$ but your path approaches the diagonal. So $\sqrt{2}=2$ In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into $n$ segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{2n^2}$ which converges to $0$. The path length is $n \frac{2}{n}$, which converges even more nicely to $2$.

correct
Source Link
Ross Millikan
  • 384.3k
  • 28
  • 266
  • 475

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is 2, then take shorter and shorter stair-steps and the length is 2 but your path approaches the diagonal. So $\sqrt{2}=2$ In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into n segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{n^2}$$n \frac{1}{2n^2}$ which converges to 0. The path length is $n \frac{2}{n}$, which converges even more nicely to 2.

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is 2, then take shorter and shorter stair-steps and the length is 2 but your path approaches the diagonal. So $\sqrt{2}=2$ In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into n segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{n^2}$ which converges to 0. The path length is $n \frac{2}{n}$, which converges even more nicely to 2.

This question is usually posed as the length of the diagonal of a unit square. You start going from one corner to the opposite one following the perimeter and observe the length is 2, then take shorter and shorter stair-steps and the length is 2 but your path approaches the diagonal. So $\sqrt{2}=2$ In both cases, you are approaching the area but not the path length. You can make this more rigorous by breaking into increments and following the proof of the Riemann sum. The difference in area between the two curves goes nicely to zero, but the difference in arc length stays constant.

Edit: making the square more explicit. Imagine dividing the diagonal into n segments and a stairstep approximation. Each triangle is $(\frac{1}{n},\frac{1}{n},\frac{\sqrt{2}}{n})$. So the area between the stairsteps and the diagonal is $n \frac{1}{2n^2}$ which converges to 0. The path length is $n \frac{2}{n}$, which converges even more nicely to 2.

Bounty Awarded with 100 reputation awarded by CommunityBot
added 1 characters in body
Source Link
ABC
  • 6.1k
  • 3
  • 22
  • 39
Loading
add detail
Source Link
Ross Millikan
  • 384.3k
  • 28
  • 266
  • 475
Loading
Source Link
Ross Millikan
  • 384.3k
  • 28
  • 266
  • 475
Loading