Skip to main content
Corrected the last term of B
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254

Edited in response to Quonux's comments.

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta^3 }{ 8\alpha^3 },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4AC-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4AC-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Edited in response to Quonux's comments.

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta^3 }{ 8\alpha^3 },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4AC-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Deleted D in the example and corrected C in (4)
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4Ac-B^{2}\right) =0.\tag{4}$$$$8s^{3}-4As^{2}-8Cs+\left( 4AC-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16},D=\frac{9}{16}$$A=\frac{3}{2},B=-4,C=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4Ac-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16},D=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4AC-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Fixed - signs in (3), (7), (8) and example
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s+% \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4Ac-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16},D=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s+% \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4Ac-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{% \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16},D=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Yes. As an answer I will use a shorter version of this Portuguese post of mine, where I deduce all the formulae. Suppose you have the general quartic equation (I changed the notation of the coefficients to Greek letters, for my convenience):

$$\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon =0.\tag{1}$$

If you make the substitution $x=y-\frac{\beta }{4\alpha }$, you get a reduced equation of the form

$$y^{4}+Ay^{2}+By+C=0\tag{2},$$

with

$$A=\frac{\gamma }{\alpha }-\frac{3\beta ^{2}}{8\alpha ^{2}},$$

$$B=\frac{\delta }{\alpha }-\frac{\beta \gamma }{2\alpha ^{2}}+\frac{\beta }{ 8\alpha },$$

$$C=\frac{\varepsilon }{\alpha }-\frac{\beta \delta }{4\alpha ^{2}}+\frac{ \beta ^{2}\gamma}{16\alpha ^{3}}-\frac{3\beta ^{4}}{256\alpha ^{4}}.$$

After adding and subtracting $2sy^{2}+s^{2}$ to the LHS of $(2)$ and rearranging terms, we obtain the equation

$$\underset{\left( y^{2}+s\right) ^{2}}{\underbrace{y^{4}+2sy^{2}+s^{2}}}-\left[ \left( 2s-A\right) y^{2}-By+s^{2}-C\right] =0. \tag{2a}$$

Then we factor the quadratic polynomial $$\left(2s-A\right) y^{2}-By+s^{2}-C=\left(2s-A\right)(y-y_+)(y-y_-)$$ and make $y_+=y_-$, which will impose a constraint on $s$ (equation $(4)$). We will get:

$$\left( y^{2}+s+\sqrt{2s-A}y-\frac{B}{2\sqrt{2s-A}}\right) \left( y^{2}+s- \sqrt{2s-A}y+\frac{B}{2\sqrt{2s-A}}\right) =0,$$ $$\tag{3}$$

where $s$ satisfies the resolvent cubic equation

$$8s^{3}-4As^{2}-8Cs+\left( 4Ac-B^{2}\right) =0.\tag{4}$$

The four solutions of $(2)$ are the solutions of $(3)$:

$$y_{1}=-\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}}, \tag{5}$$

$$y_{2}=-\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A+\frac{2B}{\sqrt{2s-A}}} ,\tag{6}$$

$$y_{3}=\frac{1}{2}\sqrt{2s-A}+\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} ,\tag{7}$$

$$y_{4}=\frac{1}{2}\sqrt{2s-A}-\frac{1}{2}\sqrt{-2s-A-\frac{2B}{\sqrt{2s-A}}} .\tag{8}$$

Thus, the original equation $(1)$ has the solutions $$x_{k}=y_{k}-\frac{\beta }{4\alpha }.\qquad k=1,2,3,4\tag{9}$$

Example: $x^{4}+2x^{3}+3x^{2}-2x-1=0$

$$y^{4}+\frac{3}{2}y^{2}-4y+\frac{9}{16}=0.$$

The resolvent cubic is

$$8s^{3}-6s^{2}-\frac{9}{2}s-\frac{101}{8}=0.$$

Making the substitution $s=t+\frac{1}{4}$, we get

$$t^{3}-\frac{3}{4}t-\frac{7}{4}=0.$$

One solution of the cubic is

$$s_{1}=\left( -\frac{q}{2}+\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}+\left( -\frac{q}{2}-\frac{1}{2}\sqrt{q^{2}+\frac{4p^{3}}{27}}\right) ^{1/3}-\frac{b}{3a},$$

where $a=8,b=-6,c=-\frac{9}{2},d=-\frac{101}{8}$ are the coefficients of the resolvent cubic and $p=-\frac{3}{4},q=-\frac{7}{4}$ are the coefficients of the reduced cubic. Numerically, we have $s_{1}\approx 1.6608$.

The four solutions are :

$$x_{1}=-\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{2}=-\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A+\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{3}=\frac{1}{2}\sqrt{2s_{1}-A}+\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

$$x_{4}=\frac{1}{2}\sqrt{2s_{1}-A}-\frac{1}{2}\sqrt{-2s_{1}-A-\frac{2B}{ \sqrt{2s-A}}}-\frac{\beta }{4\alpha },$$

with $A=\frac{3}{2},B=-4,C=\frac{9}{16},D=\frac{9}{16}$. Numerically we have $x_{1}\approx -1.1748+1.6393i$, $x_{2}\approx -1.1748-1.6393i$, $x_{3}\approx 0.70062$, $x_{4}\approx -0.35095$.

Another method is to expand the LHS of the quartic into two quadratic polynomials, and find the zeroes of each polynomial. However, this method sometimes fails. Example: $x^{4}-x-1=0$. If we factor $x^{4}-x-1$ as $x^{4}-x-1=\left( x^{2}+bx+c\right) \left( x^{2}+Bx+C\right) $ expand and equate coefficients we will get two equations, one of which is $-1/c-c^{2}\left( 1+c^{2}\right) ^{2}+c=0$. This is studied in Galois theory.

The general quintic is not solvable in terms of radicals, as well as equations of higher degrees.

Fixed typo c --> \gamma
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
added 352 characters in body
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
added 83 characters in body
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
added 91 characters in body
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
added 91 characters in body
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
added 585 characters in body
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
edited body
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
added 93 characters in body
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading
Source Link
Américo Tavares
  • 39.3k
  • 14
  • 111
  • 254
Loading