Let $\mathbb N$ denote the set of positive integers.
The following statements are equivalent:
$\lim_{n\to\infty}f_n\left(x\right)=+\infty$
$\forall m\in\mathbb{N}\exists k\in\mathbb{N}\forall n\geq k\; f_{n}\left(x\right)\geq m$
$x\in\bigcap_{n=1}^{\infty}\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}\left\{ y\in\mathbb{R}\mid f_{n}\left(y\right)\geq m\right\} $
This tells us that: $$A:=\left\{ x\in\mathbb{R}\mid \lim_{n\to\infty}f_n\left(x\right)=+\infty\right\} =\bigcap_{n=1}^{\infty}\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}\left\{ y\in\mathbb{R}\mid f_{n}\left(y\right)\geq m\right\} $$
The RHS is measurable because for each $n\in\mathbb{N}$ the set $\left\{ y\in\mathbb{R}\mid f_{n}\left(y\right)\geq m\right\} $ is measurable.
The following statements are equivalent:
$\left(f_{n}\left(x\right)\right)_{n}$ is bounded
$\exists m\in\mathbb{N}\forall n\in\mathbb{N}\; f_{n}\left(x\right)\leq m$
$x\in\bigcup_{m=1}^{\infty}\bigcap_{n=1}^{\infty}\left\{ y\in\mathbb{R}\mid f_{n}\left(y\right)\leq m\right\} $
This tells us that: $$B:=\left\{ x\in\mathbb{R}\mid\left(f_{n}\left(x\right)\right)_{n}\text{ is bounded}\right\} =\bigcup_{m=1}^{\infty}\bigcap_{n=1}^{\infty}\left\{ y\in\mathbb{R}\mid f_{n}\left(y\right)\leq m\right\} $$
The RHS is measurable because for each $n\in\mathbb{N}$ the set $\left\{ y\in\mathbb{R}\mid f_{n}\left(y\right)\leq m\right\} $ is measurable.