3
$\begingroup$

I have the following principal value integral: $$\mathcal{P}\int_0^\infty\frac{x^4}{\left(1+\frac{x^2}{B^2}\right)^{4}\sqrt{C^2+x^2}\left[\sqrt{C^2+a^2}-\sqrt{C^2+x^2}\right]}dx$$ where $a,B,C\in\mathbb{R}^+$, (and of course the singularity is at $x=a$). If it's analytically solvable (which I highly doubt), I'd like to know how to solve it. (As a commenter has pointed out, there is actually an elementary antiderivative for the indefinite integral, but the form is rather complicated so I'd rather just reduce it to a non-principal form and evaluate it numerically.) How can I manipulate it to equate it to an expression in terms of "ordinary" (non-principal-value) integrals?

It has been suggested by someone I know that I might be able to make use of the result: $$\mathcal{P}\int_0^\infty\frac{dx}{C^2-x^2}=0$$ for $C\in\mathbb{R}$, but I am unsure how to make this result useful.

$\endgroup$
3
  • 1
    $\begingroup$ The indefinite integral, in fact, has elementary antiderivative, Use the substitution $$t + x= \sqrt{C^2+x^2} $$ (known as Euler substitution) to convert it into rational function. $\endgroup$ Commented Jan 25, 2018 at 16:09
  • 1
    $\begingroup$ If your purpose is to numerically calculate it for various $a,B,C$, then since the integrand is even, you can shift the line of integration to $\pm \infty + i\varepsilon$, but you have to include half the residue at $x=a$. $\endgroup$ Commented Jan 25, 2018 at 16:16
  • 1
    $\begingroup$ I haven't really studied any complex analysis, so I'm unsure what you mean by the second comment. As for the first comment - seems doable, but doesn't the result still have a singularity? $\endgroup$ Commented Jan 26, 2018 at 4:32

1 Answer 1

2
$\begingroup$

Chop out the singularity piece by piece: $$\begin{align}f(x,a,B,C)&=\frac{x^4}{\left(1+\frac{x^2}{B^2}\right)^4\sqrt{C^2+x^2}\left(\sqrt{C^2+a^2}-\sqrt{C^2+x^2}\right)}\\ &=\frac{x^4\left(\sqrt{C^2+a^2}+\sqrt{C^2+x^2}\right)}{\left(1+\frac{x^2}{B^2}\right)^4\sqrt{C^2+x^2}\left(a^2-x^2\right)}\\ &=\frac{x^4}{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}\left[\frac{\sqrt{C^2+a^2}+\sqrt{C^2+x^2}}{\sqrt{C^2+x^2}}-2+2\right]\\ &=\frac{x^4}{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}\left[\frac{\sqrt{C^2+a^2}-\sqrt{C^2+x^2}}{\sqrt{C^2+x^2}}+2\right]\\ &=\frac{x^4}{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}\left[\frac{a^2-x^2}{\sqrt{C^2+x^2}\left(\sqrt{C^2+a^2}+\sqrt{C^2+x^2}\right)}+2\right]\\ &=\frac{x^4}{\left(1+\frac{x^2}{B^2}\right)^4\sqrt{C^2+x^2}\left(\sqrt{C^2+a^2}+\sqrt{C^2+x^2}\right)}+\frac{2x^4}{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}\end{align}$$ Then $$\begin{align}\frac{2x^4}{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}&=\frac1{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}\left[2x^4-2a^4+2a^4\right]\\ &=\frac1{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}\left[2\left(a^2+x^2\right)\left(a^2-x^2\right)+2a^4\right]\\ &=\frac{2\left(a^2+x^2\right)}{\left(1+\frac{x^2}{B^2}\right)^4}+\frac{2a^4}{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}\end{align}$$ And finally $$\begin{align}\frac{2a^4}{\left(1+\frac{x^2}{B^2}\right)^4\left(a^2-x^2\right)}&=\frac{2a^4}{\left(a^2-x^2\right)}\left[\frac1{\left(1+\frac{x^2}{B^2}\right)^4}-\frac1{\left(1+\frac{a^2}{B^2}\right)^4}+\frac1{\left(1+\frac{a^2}{B^2}\right)^4}\right]\\ &=\frac{2a^4}{\left(a^2-x^2\right)}\left[\frac{\left(\frac4{B^2}+\frac6{B^4}\left(a^2+x^2\right)+\frac4{B^6}\left(a^4+a^2x^2+x^4\right)+\frac1{B^8}\left(a^6+a^4x^2+a^2x^4+x^6\right)\right)\left(a^2-x^2\right)}{\left(1+\frac{x^2}{B^2}\right)^4\left(1+\frac{a^2}{B^2}\right)^4}+\frac1{\left(1+\frac{a^2}{B^2}\right)^4}\right]\\ &=\frac{2a^4\left(\frac4{B^2}+\frac6{B^4}\left(a^2+x^2\right)+\frac4{B^6}\left(a^4+a^2x^2+x^4\right)+\frac1{B^8}\left(a^6+a^4x^2+a^2x^4+x^6\right)\right)}{\left(1+\frac{x^2}{B^2}\right)^4\left(1+\frac{a^2}{B^2}\right)^4}\\ &+\frac{2a^4}{\left(1+\frac{a^2}{B^2}\right)^4\left(a^2-x^2\right)}\end{align}$$ So that last term embodies the singularity with a principal value of $0$ and hopefully you can integrate the rest of it numerically.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.