2
$\begingroup$

Show that | $\left\lVert x \right\rVert - \left\lVert y \right\rVert$ | $\leq$ $\left\lVert x - y \right\rVert$ for any x and y in a normed space.

Here is my attempt:

Take the triangle inequality \begin{align*} \left\lVert x + y \right\rVert &\leq \left\lVert x + y \right\rVert + \left\lVert y \right\rVert \\ &= \left\lVert x - y + y \right\rVert + \left\lVert y \right\rVert \\ &\leq \left\lVert x - y\right\rVert + \left\lVert y \right\rVert + \left\lVert y \right\rVert. \end{align*}

Then we move the two $\left\lVert y \right\rVert$'s to the other side \begin{align*} \left\lVert x-y \right\rVert &\geq \left\lVert x + y \right\rVert - \left\lVert y \right\rVert - \left\lVert y \right\rVert \\ &\geq \left\lVert x \right\rVert + \left\lVert y \right\rVert - \left\lVert y \right\rVert - \left\lVert y \right\rVert\\ &\geq \left\lVert x \right\rVert - \left\lVert y \right\rVert.\end{align*}

I am not sure if I can separate the $\left\lVert x + y \right\rVert$ into $\left\lVert x \right\rVert + \left\lVert y \right\rVert$ like I did and I am not sure how to get absolute values so any hints would be great.

$\endgroup$
3
  • $\begingroup$ You can not separate the $||x+y||$ like you did. Triangle inequality gives $||x+y||\leq||x||+||y||$, not $\geq$. To solve the exercise use the reverse triangle inequality: $||x||\leq||x-y||+||y||$, so $||x-y||\geq||x||-||y||$. $\endgroup$ Commented Oct 17, 2018 at 23:27
  • $\begingroup$ In the textbook I am using this is called the triangle inequality so I'm not sure I am aloud to do that. $\endgroup$ Commented Oct 17, 2018 at 23:30
  • $\begingroup$ You can prove the reverse triangle inequality yourself. It is only a few deductions. $\endgroup$ Commented Oct 17, 2018 at 23:32

1 Answer 1

1
$\begingroup$

Assume that $\| x\|\geq \|y\|$. Then $$|\|x\|-\|y\|| =\|x\|-\|y\|\leq \|x-y\|$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.