The identity
$${ \int _0 ^{\infty} e ^{- t} t ^n \, dt = n! }$$
naturally arises when finding the density of the random variable ${ Z _n = T _1 + \ldots + T _n }$ where ${ T _i \overset{\text{i.i.d}}{\sim} \text{Exp}(\lambda) . }$
Consider radioactive decay of an element, with memoryless waiting time ${ T \sim \text{Exp}(\lambda) . }$ Let ${ n \in \mathbb{Z} _{> 0} . }$ Consider the time taken for ${ n }$ decays to occur, namely the random variable ${ Z _n = T _1 + \ldots + T _n }$ where ${ T _i \overset{\text{i.i.d}}{\sim} \text{Exp}(\lambda) . }$
For ${ n = 2 }$:
The density of ${ Z _2 }$ is the convolution
$${ {\begin{align} &\, f _{Z _2} (x) \\ = &\, (f \ast f)(x) \\ = &\, \int _0 ^x f(t) f(x - t) \, dt \\ = &\, \int _0 ^x \lambda e ^{-\lambda t} \lambda e ^{-\lambda (x - t) } \, dt \\ = &\, \lambda ^2 x e ^{- \lambda x } \end{align}} }$$
that is
$${ f _{Z _2} (x) = \lambda ^2 x e ^{- \lambda x } \quad \text{ for } x > 0. }$$
For ${ n = 3 }$:
The density of ${ Z _3 }$ is the convolution
$${ {\begin{align} &\, f _{Z _3} (x) \\ = &\, (f \ast f _{Z _2})(x) \\ = &\, \int _0 ^x f(t) f _{Z _2} (x - t) \, dt \\ = &\, \int _0 ^x \lambda e ^{-\lambda t} \lambda ^2 (x - t) e ^{-\lambda (x - t) } \, dt \\ = &\, \frac{\lambda ^3 x ^2}{2} e ^{- \lambda x } \end{align}} }$$
that is
$${ f _{Z _3} (x) = \frac{\lambda ^3 x ^2}{2} e ^{- \lambda x } \quad \text{ for } x > 0 . }$$
Now by induction hypothesis
$${ \text{Induction hypothesis :} \quad f _{Z _k} (x) = \lambda \frac{(\lambda x) ^{k - 1}}{(k-1)!} e ^{- \lambda x } \quad \text{ for } x > 0 }$$
we see
$${ {\begin{align} &\, f _{Z _{k+1}} (x) \\ = &\, (f \ast f _{Z _k})(x) \\ = &\, \int _0 ^x f(t) f _{Z _k} (x - t) \, dt \\ = &\, \int _0 ^x \lambda e ^{-\lambda t} \lambda \frac{(\lambda (x - t)) ^{k - 1}}{(k-1)!} e ^{-\lambda (x - t) } \, dt \\ = &\, \lambda \frac{(\lambda x) ^{k}}{k!} e ^{- \lambda x } \end{align}} }$$
that is
$${ f _{Z _{k + 1}} (x) = \lambda \frac{(\lambda x) ^k}{k!} e ^{- \lambda x } \quad \text{ for } x > 0 . }$$
Hence
$${ \boxed{ f _{Z _n} (x) = \lambda \frac{(\lambda x) ^{n - 1}}{(n-1)!} e ^{- \lambda x } \quad \text{ for } x > 0 } }$$
for all ${ n \in \mathbb{Z} _{> 0} . }$
Especially
$${ \int _0 ^{\infty} \lambda \frac{(\lambda x) ^{n - 1}}{(n-1)!} e ^{- \lambda x } \, dx = 1 }$$
that is
$${ \boxed{ \int _0 ^{\infty} x ^{n - 1} e ^{- x} \, dx = (n - 1)! } . }$$
Aside: We can also find the density of ${ Z _n }$ in an alternate way. This is from Introduction to mathematical statistics by Hogg, McKean, Craig, and in the context of the answer here.
Note that the time for ${ n }$ decays is
$${ Z _n = \inf \lbrace \tau > 0 : N(\tau) = n \rbrace . }$$
Its cdf is given by
$${ {\begin{aligned} &\, F _{Z _n} (z) \\ = &\, \mathbb{P}(Z _n \leq z) \\ = &\, 1 - \mathbb{P}(Z _n > z) \\ = &\, 1 - \mathbb{P}(\text{There are less than } n \text{ decays in } [0, z]) \\ = &\, 1 - \sum _{k = 0} ^{n - 1} \mathbb{P}(N(z) = k) \\ = &\, 1 - \sum _{ k = 0} ^{n - 1} e ^{- \lambda z } \frac{(\lambda z) ^k}{k!}. \end{aligned}} }$$
From the already computed density
$${ {\begin{aligned} &\, F _{Z _n} (z) \\ = &\, 1 - \int _z ^{\infty} \lambda \frac{(\lambda x) ^{n - 1}}{(n-1)!} e ^{- \lambda x } \, dx \\= &\, 1 - \int _{\lambda z} ^{\infty} \frac{t ^{n - 1}}{(n - 1)!} e ^{- t} \, dt . \end{aligned}} }$$
Equating both the expressions we have
$${ \boxed{ \mathbb{P}(Z _n > z) = \int _{\lambda z} ^{\infty} \frac{t ^{n - 1} e ^{- t} }{(n - 1)!} \, dt = \sum _{ k = 0} ^{n - 1} \frac{(\lambda z) ^k e ^{- \lambda z}}{k!}} . }$$
So roughly speaking, for
$${ \frac{t ^j e ^{- t}}{j!} , }$$
setting ${ j = (n-1) }$ and integrating from ${ t = \lambda z }$ to infinity is same as setting ${ t = \lambda z }$ and adding from ${ j = 0 }$ to ${ (n - 1) . }$