1
$\begingroup$

I'm having trouble proving the following:

Suppose that $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $\mathbf{x} \in \mathbb{R}^n$, $$ \lVert \mathbf{x} \rVert_p = \sup_{\mathbf{y} \in \mathbb{R}^n} \frac{\lvert \mathbf{x} \cdot \mathbf{y} \rvert}{\lVert \mathbf{y} \rVert_q} , \qquad \mathbf{y} \neq \mathbf{0} . $$

This post hints at the intuition behind how a proof might work, but I have no idea how to flesh out the details.


Definition of $p$-norm:

Let $1 \leq p < \infty$. For $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define $$ \lVert \mathbf{x} \rVert_p = \left( \sum_{k = 1}^n \lvert x_k \rvert^p \right)^{1/p} . $$

$\endgroup$
0

1 Answer 1

3
$\begingroup$

What you need is a special case of Hölder's Inequality: $$ |x\cdot y|\leq\|x\|_p\,\|y\|_q. $$ This gives you immediately that $$ \lVert \mathbf{x} \rVert_p \geq \sup_{\mathbf{y} \in \mathbb{R}^n} \frac{\lvert \mathbf{x} \cdot \mathbf{y} \rvert}{\lVert \mathbf{y} \rVert_q} , \qquad \mathbf{y} \neq \mathbf{0} . $$ For the reverse inequality, note that if $a_j$ is such that $x_ja_j=|x_j|$, defining $y$ by $$ y_j=a_j\,|x_j|^{p-1} $$ gives us $$ \frac{|x\cdot y|}{\|y\|_q} =\frac{\displaystyle\sum_j |x_j|^p}{\Big(\sum_j |x_j|^{q(p-1)} \Big)^{1/q}} =\frac{\|x\|_p^p}{\|x\|_p^{p/q}}=\|x\|_p. $$

$\endgroup$
3
  • $\begingroup$ 1. Why is $(\sum_j \lvert x_j \rvert^{q(p-1)})^{1/q} = \lVert \mathbf{x} \rVert_p^{1/q}$? $\endgroup$ Commented Oct 1, 2020 at 7:10
  • $\begingroup$ 2. For the reverse inequality, why are we allowed define $\mathbf{y}$? Shouldn't we be considering all $\mathbf{y} \in \mathbb{R}^n$? In fact I don't understand what the reverse inequality (equality) is for. $\endgroup$ Commented Oct 1, 2020 at 7:13
  • $\begingroup$ There was a $p$ missing on the right. And $q(p-1)=p$. $\endgroup$ Commented Oct 1, 2020 at 13:27

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.