1
$\begingroup$

Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ such that $\lVert \mathbf{A}\rVert < 1$, where $\lVert \heartsuit\rVert$ is matrix norm. Show that \begin{equation*} \frac{1}{1 + \lVert\mathbf{A}\rVert} \leq \lVert (\mathbf{I}_{d} - \mathbf{A})^{-1} \rVert \leq \frac{1}{1-\lVert\mathbf{A}\rVert}. \end{equation*}

I have shown that $ (\mathbf{I}_{d} - \mathbf{A})$ is invertible, using the fact that the subset of invertiable matrices is open. Then using geometric series, I could show one side of the inequality $$\lVert (\mathbf{I}_{d} - \mathbf{A})^{-1} \rVert = \lVert\sum_{k=0}^{\infty} \mathbf{A}^{k}\rVert \leq \sum_{k=0}^{\infty} \lVert\mathbf{A}\rVert^k = \frac{1}{1-\lVert\mathbf{A}\rVert}$$

Since $\lVert\mathbf{A}\rVert^{n+1} \leq \lVert\mathbf{A}\rVert^{n} $ und $\lim_{n \to \infty} \lVert\mathbf{A}\rVert^n = 0$, we have $$\sum_{k=0}^{\infty} (-1)^k \lVert\mathbf{A}\rVert^k = \frac{1}{1+\lVert\mathbf{A}\rVert}$$ but I can't show that it bounds $\lVert (\mathbf{I}_{d} - \mathbf{A})^{-1} \rVert $ from below. Any help?

$\endgroup$

1 Answer 1

2
$\begingroup$

In general $\|B^{-1}\|\ge\frac{1}{\|B\|}$ since $1=\|BB^{-1}\|\le\|B\|\|B^{-1}\|$.

Also, $\|I-A\|\le1+\|A\|$. Hence combining the two, $$\|(I-A)^{-1}\|\ge\frac{1}{\|I-A\|}\ge\frac{1}{1+\|A\|}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.