Let $n\in\mathbb{N}$. When it comes to calculating the Hessian matrix of a function $f:\mathbb{R}^n\to\mathbb{R}$, I just calculate $\frac{\partial^2f}{x_ix_j}$ for all $1\leq i,j\leq n$. Unfortunately, I am stuck when it comes to calculating the Hessian Matrix of $f\left(x\right)=x^TAx$ for a general $A\in\mathbb{R}^{n\times n}$.
Questions
- What other methods for calculating the Hessian matrix exist?
- How can the Hessian of $f\left(x\right)=x^TAx$ be conveniently calculated?