1
$\begingroup$

I have a question regarding Gamma Incomplete function:

In the "Table of Integrals, Series, and Products, Seventh Edition" equation $8.353.3$ page $900$, there is a defenition for the incomplete gamma function in the case $a < 1$ and $x > 0$

$$ \Gamma(a,x)=\frac{\rho^{-x}x^{a}}{\Gamma(1-a)} \int_0^\infty \frac{e^{-t} t^{-a}}{x+t} dt$$

what is $ \rho $ in the above equation? I thought this might be a but I tried to derive the above formula but I don't got the same result.

$\endgroup$

2 Answers 2

7
$\begingroup$

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\Gamma\pars{a,x} = {\expo{-x}x^{a} \over \Gamma\pars{1 - a}} \int_{0}^{\infty}{\expo{-t}t^{-a} \over x + t}\,\dd t:\ {\Large ?}}$

\begin{align} &\color{#f00}{\Gamma\pars{a,x}\Gamma\pars{1 - a}}= \int_{x}^{\infty}\dd t\,t^{a - 1}\expo{-t}\int_{0}^{\infty}\dd t'\, t'^{\pars{1 - a} - 1}\expo{-t'} \\[3mm]&=\int_{x^{1/2}}^{\infty}\dd t\,\pars{2t}t^{2a - 2}\expo{-t^{2}} \int_{0}^{\infty}\dd t'\,\pars{2t'}t'^{-2a}\expo{-t'^{2}} \\[3mm]&=4\int_{0}^{\infty}\int_{0}^{\infty}\Theta\pars{t - x^{1/2}}t^{2a - 1} t'^{1 - 2a}\expo{-\pars{t^{2} + t'^{2}}}\,\dd t\,\dd t' \\[3mm]&=4\int_{0}^{\pi/2}\dd\theta\int_{0}^{\infty}\dd r\,r\, \Theta\pars{r\cos\pars{\theta} - x^{1/2}}r^{2a - 1}\cos^{2a - 1\pars{\theta}} r^{1 - 2a}\sin^{1 - 2a}\pars{\theta}\expo{-r^{2}} \\[3mm]&=4\int_{0}^{\infty}\dd r\,r\expo{-r^{2}}\int_{0}^{\pi/2}\dd\theta\, \Theta\pars{\cos\pars{\theta} - {x^{1/2} \over r}}\cos^{2a -1}\pars{\theta} \sin^{1 - 2a}\pars{\theta} \\[3mm]&=2\int_{0}^{\infty}\dd t\,\expo{-t}\int_{0}^{\pi/2}\dd\theta\, \Theta\pars{\cos\pars{\theta} - \bracks{x \over t}^{1/2}}\cos^{2a -1}\pars{\theta} \sin^{1 - 2a}\pars{\theta} \\[3mm]&=2\int_{0}^{\infty}\dd t\,\expo{-t}\int_{0}^{1}\dd t'\, \Theta\pars{t' - \bracks{x \over t}^{1/2}}t'^{2a - 1}\pars{1 - t'^{2}}^{-a} \\[3mm]&=2\int_{0}^{\infty}\dd t\,\expo{-t}\int_{0}^{1}\dd t'\,\half\,t'^{-1/2} \Theta\pars{t' - {x \over t}}t'^{a - 1/2}\pars{1 - t'}^{-a} \\[3mm]&=\int_{0}^{\infty}\dd t\,\expo{-t}\int_{0}^{1}\dd t'\, \Theta\pars{tt' - x}t'^{a - 1}\pars{1 - t'}^{-a} =\int_{0}^{1}\dd t'\,t'^{a - 1}\pars{1 - t'}^{-a}\int_{x/t'}^{\infty}\dd t\,\expo{-t} \\[3mm]&=\int_{0}^{1}\dd t'\,t'^{a - 1}\pars{1 - t'}^{-a}\expo{-x/t'} =\int_{\infty}^{1}t^{1 - a}\pars{1 - {1 \over t}}^{-a}\expo{-xt}\, \pars{-\,{\dd t \over t^{2}}} \\[3mm]&=\int_{1}^{\infty}t^{-1}\pars{t - 1}^{-a}\expo{-xt}\,\dd t =\int_{0}^{\infty}{t^{-a} \over t + 1}\expo{-x\pars{t + 1}}\,\dd t =\expo{-x}\int_{0}^{\infty}{\expo{-xt}t^{-a} \over t + 1}\,\dd t \\[3mm]&= \color{#f00}{\expo{-x}x^{a}\int_{0}^{\infty}{\expo{-t}t^{-a} \over t + x}\,\dd t} \end{align}

Then $$\color{#00f}{\large% \Gamma\pars{a,x} = {\expo{-x}x^{a} \over \Gamma\pars{1 - a}} \int_{0}^{\infty}{\expo{-t}t^{-a} \over x + t}\,\dd t} $$

$\endgroup$
3
  • $\begingroup$ Wow, that must have been painful! $\endgroup$ Commented Feb 23, 2014 at 23:55
  • $\begingroup$ @JPi Yes. I went back and forth before I saw the right road. Thanks. $\endgroup$ Commented Feb 23, 2014 at 23:56
  • $\begingroup$ @FelixMarin Thanks a lot. $\endgroup$ Commented Feb 24, 2014 at 9:38
0
$\begingroup$

It should be $e$. See the Handbook of Mathematical Functions, 8.6.4.

$\endgroup$
2
  • $\begingroup$ Do you mean "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1970" By Milton Abramowitz, Irene A. Stegun? Page 334 equation 8.6.4 is it related to my case? $\endgroup$ Commented Feb 23, 2014 at 22:09
  • 1
    $\begingroup$ No, the NIST Handbook of Mathematical Functions by Olver et al.. It is identical to your case except that $\rho$ in your formula is $e$ in theirs. $\endgroup$ Commented Feb 23, 2014 at 23:48

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.