(sol[[1]])["ElementMesh"] ["Coordinates"] {{0.}, {0.1}, {0.2}, {0.3}, {0.4}, {0.5}, {0.6}, {0.7}, {0.8}, {0.9}, \ {1.}, {1.1}, {1.2}, {1.3}, {1.4}, {1.5}, {1.6}, {1.7}, {1.8}, {1.9}, \ {2.}, {0.05}, {0.15}, {0.25}, {0.35}, {0.45}, {0.55}, {0.65}, {0.75}, \ {0.85}, {0.95}, {1.05}, {1.15}, {1.25}, {1.35}, {1.45}, {1.55}, \ {1.65}, {1.75}, {1.85}, {1.95}}
EDIT
Some clarifications
The fact that the mesh order is 2 is confusing. It becomes clear (I hope) if you do the same thing with mesh order which is 1 :
w2 = 6; m = 2; T = 2.0; sol = NDSolveValue[{q'[t] == \[Zeta][t], \[Zeta]'[t] + w2*Sin[q[t]] == 0, DirichletCondition[{q[t] == Pi/3., \[Zeta][t] == 0}, t == 0]}, {q, \[Zeta]}, t \[Element] Line[{{0}, {T}}], Method -> { "FiniteElement", "MeshOptions" -> {"MeshOrder" -> 1} }]; (sol[[1]])["ElementMesh"]["MeshOrder"] (sol[[1]])["ElementMesh"]["MeshElements"] (sol[[1]])["ElementMesh"]["Coordinates"]
1
{NDSolveFEMLineElement[{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {14, 15}, {15, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}, {20, 21}}]}
{{0.}, {0.1}, {0.2}, {0.3}, {0.4}, {0.5}, {0.6}, {0.7}, {0.8}, {0.9}, {1.}, {1.1}, {1.2}, {1.3}, {1.4}, {1.5}, {1.6}, {1.7}, {1.8}, {1.9}, {2.}}