Skip to main content
Fixed an issue in the definition of `entropyAsymptotic2`
Source Link
ydd
  • 8.8k
  • 1
  • 12
  • 28
constK=1/4 (-16 ArcSinh[1]+16 Sqrt[2] ArcSinh[1]-8 Log[2]-6 Sqrt[2] Log[2]-2 EulerGamma Zeta[1/2]-\[Pi] Zeta[1/2]+2 Log[2] Zeta[1/2]-2 Log[\[Pi]] Zeta[1/2]); entropyAsymptotic2[r_] :=1= 1/(4Log[2]Sqrt[r4 Log[2] Sqrt[r!]) (constK - HurwitzZeta[1/2,1+r 1 + r!] Log[4]+2Log[4] + 2 Sqrt[r!] Log[r!]+(Zeta^(1] + Derivative[1,0))[10][Zeta][1/2,1+r!]) 
constK=1/4 (-16 ArcSinh[1]+16 Sqrt[2] ArcSinh[1]-8 Log[2]-6 Sqrt[2] Log[2]-2 EulerGamma Zeta[1/2]-\[Pi] Zeta[1/2]+2 Log[2] Zeta[1/2]-2 Log[\[Pi]] Zeta[1/2]); entropyAsymptotic2[r_]:=1/(4Log[2]Sqrt[r!]) (constK-HurwitzZeta[1/2,1+r!] Log[4]+2 Sqrt[r!] Log[r!]+(Zeta^(1,0))[1/2,1+r!]) 
constK=1/4 (-16 ArcSinh[1]+16 Sqrt[2] ArcSinh[1]-8 Log[2]-6 Sqrt[2] Log[2]-2 EulerGamma Zeta[1/2]-\[Pi] Zeta[1/2]+2 Log[2] Zeta[1/2]-2 Log[\[Pi]] Zeta[1/2]); entropyAsymptotic2[r_] := 1/(4 Log[2] Sqrt[r!]) (constK - HurwitzZeta[1/2, 1 + r!] Log[4] + 2 Sqrt[r!] Log[r!] + Derivative[1,0][Zeta][1/2,1+r!]) 
added 177 characters in body
Source Link
ydd
  • 8.8k
  • 1
  • 12
  • 28

(small add-on note: entropyRecursive stores exact values, which can get huge in terms of LeafCount. If you want approximate values change the initial term to entropyRecursive[1] = 0.. You can also replace Sum with NSum to get really fast computation but you will need to Check each output or something similar as eventually NSum will run into trouble.)

(small add-on note: entropyRecursive stores exact values, which can get huge in terms of LeafCount. If you want approximate values change the initial term to entropyRecursive[1] = 0.)

(small add-on note: entropyRecursive stores exact values, which can get huge in terms of LeafCount. If you want approximate values change the initial term to entropyRecursive[1] = 0.. You can also replace Sum with NSum to get really fast computation but you will need to Check each output or something similar as eventually NSum will run into trouble.)

added 192 characters in body
Source Link
ydd
  • 8.8k
  • 1
  • 12
  • 28

A good simple approximation is $$ \text{entropy}(r) \approx log_2{r!} - \log_2(e) + 1 $$$$ \text{entropy}(r) \approx \log_2{r!} - \log_2(e) + 1 $$

$$ \text{entropy}(r) \approx log_2{r!} - \log_2(e) + 1 $$$$ \text{entropy}(r) \approx \log_2{r!} - \log_2(e) + 1 $$

(small add-on note: entropyRecursive stores exact values, which can get huge in terms of LeafCount. If you want approximate values change the initial term to entropyRecursive[1] = 0.)

A good simple approximation is $$ \text{entropy}(r) \approx log_2{r!} - \log_2(e) + 1 $$

$$ \text{entropy}(r) \approx log_2{r!} - \log_2(e) + 1 $$

A good simple approximation is $$ \text{entropy}(r) \approx \log_2{r!} - \log_2(e) + 1 $$

$$ \text{entropy}(r) \approx \log_2{r!} - \log_2(e) + 1 $$

(small add-on note: entropyRecursive stores exact values, which can get huge in terms of LeafCount. If you want approximate values change the initial term to entropyRecursive[1] = 0.)

Removed Abs from plot comparison of values that don't go to zero with r
Source Link
ydd
  • 8.8k
  • 1
  • 12
  • 28
Loading
added 859 characters in body
Source Link
ydd
  • 8.8k
  • 1
  • 12
  • 28
Loading
Source Link
ydd
  • 8.8k
  • 1
  • 12
  • 28
Loading