One way would be like the following. Let us define the function rule as follows:
Clear[rule]; rule[expr_] := ReplaceAll[ expr, {Sin[2 \[Gamma]_]γ_] -> 2*Sin[\[Gamma]]*Cos[\[Gamma]]2*Sin[γ]*Cos[γ], Cos[2 \[Gamma]_]γ_] -> Cos[\[Gamma]]^2Cos[γ]^2 - Sin[\[Gamma]]^2Sin[γ]^2}]; and map this function on your expression. For the sake of shortness I take here only a small part of your otherwise a too long expression. The effect is, however, the same, I checked. So, let this:
expr=(Cos[Subscript[\[CapitalTheta]Cos[Subscript[Θ, 12]] Sin[2 \[Gamma]]γ] f[Subscript[r, 1], Subscript[r, 2], \[Alpha]α, \[Beta]β, \[Gamma]γ, Subscript[\[CapitalTheta]Subscript[Θ, 12]])/(2 Sin[\[Beta]]Sin[β] Sin[ Subscript[\[CapitalTheta]Subscript[Θ, 12]]^2 \!\(\*SubsuperscriptBox[\(r\), \(1\), \(2\)]\) Subscript[\[Mu]Subscript[μ, 1]) be your expression in the StandardForm. Then this
Map[rule, expr]//TraditionalForm returning this:
(* (sin(\[Gamma]γ) cos(\[Gamma]γ) cos(Subscript[\[CapitalTheta]Subscript[Θ, 12]) f(Subscript[r, 1], Subscript[r, 2]],\[Alpha]α,\[Beta]β,\[Gamma]γ,Subscript[\[CapitalTheta] Subscript[Θ, 12]) )/(Subscript[\[Mu]Subscript[μ, 1] Subsuperscript[r, 1, 2] sin(\[Beta]β) sin(Subscript[\[CapitalTheta]Subscript[Θ, 12])^2) *) Though it looks awfully here, this:
is
is what you see on the screen. And suchlike looks each term.