Skip to main content
deleted 31 characters in body; edited title
Source Link

Any way I can solveevaluate this integral?

So, Mathematica can't solveevaluate it. Any workaround?

\begin{equation*} \int_0^\pi \frac{1}{\sin\left(\frac{\theta}{2}\right)^\beta + 1} \mathrm{d}\theta \end{equation*}$$\int_0^\pi \frac{\mathrm{d}\theta}{\sin\left(\frac{\theta}{2}\right)^\beta + 1}$$

The code is:

Integrate[1/(Sin[θ/2]^β + 1), {θ, 0, π}] 

Any way I can solve this integral?

So, Mathematica can't solve it. Any workaround?

\begin{equation*} \int_0^\pi \frac{1}{\sin\left(\frac{\theta}{2}\right)^\beta + 1} \mathrm{d}\theta \end{equation*}

The code is:

Integrate[1/(Sin[θ/2]^β + 1), {θ, 0, π}] 

Any way I can evaluate this integral?

So, Mathematica can't evaluate it. Any workaround?

$$\int_0^\pi \frac{\mathrm{d}\theta}{\sin\left(\frac{\theta}{2}\right)^\beta + 1}$$

The code is:

Integrate[1/(Sin[θ/2]^β + 1), {θ, 0, π}] 
edited tags
Link

So, MathematicaMathematica can't solve it. Any workaround?

$\int_0^\pi \frac{1}{Sin[\frac{\theta}{2}]^\beta + 1} d\theta$\begin{equation*} \int_0^\pi \frac{1}{\sin\left(\frac{\theta}{2}\right)^\beta + 1} \mathrm{d}\theta \end{equation*}

Integrate[1/(Sin[[Theta]/2]^[Beta] + 1), {[Theta], 0, [Pi]}]The code is:

Thanks,

Integrate[1/(Sin[θ/2]^β + 1), {θ, 0, π}] 

So, Mathematica can't solve it. Any workaround?

$\int_0^\pi \frac{1}{Sin[\frac{\theta}{2}]^\beta + 1} d\theta$

Integrate[1/(Sin[[Theta]/2]^[Beta] + 1), {[Theta], 0, [Pi]}]

Thanks,

So, Mathematica can't solve it. Any workaround?

\begin{equation*} \int_0^\pi \frac{1}{\sin\left(\frac{\theta}{2}\right)^\beta + 1} \mathrm{d}\theta \end{equation*}

The code is:

Integrate[1/(Sin[θ/2]^β + 1), {θ, 0, π}] 
added 72 characters in body
Source Link
Loading
Source Link
Loading