Let me add the general expansion in the form of Till Hoffmann, which I call s-expansion in the following
It is very interesting that this expression seems to hold not only for the powers of y considered up to now but for more general functionfunctions f(y). I have successfully tested $f(x)=\frac{1}{y+1}$, and I shall continue
In order to verify this investigationhypothesis we shall study examples for other functions than simple powers of the s-expansion fs of our integral.
The s-expansion with a function f is given by
fs[x_, s_, f_, n_] := Sum[s^(2 j) 1/(j! 2^j) D[x^(j) f, {x, 2 j}], {j, 0, n}]
Example 1: Simple pole on the negative real y-axis
The integral is numerically
gg1[x_, s_] := NIntegrate[ Exp[-(x - y)^2/(2 y s^2)] 1/(1 + y) 1/Sqrt[2 \[Pi] y s^2], {y,0, \[Infinity]}]
The first 3 terms of the s-expansion are
fs1[x_, s_] = Table[fs[x, s, 1/(1 + x), k], {k, 0, 2}] // Simplify (* {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5} *)
Graphs up to order s^4 for two values of s are
With[{s = 1}, Plot[{gg1[x, s], {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+y), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg1[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = f(x)\n\ brown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = \ O(\!\(\*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f1 _s1.jpg *)

With[{s = 0.3}, Plot[{gg1[x, s], {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+y), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg1[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = \ f(x)\nbrown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = O(\!\(\ \*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f1 _s0-3.jpg *)

Example 2: Simple conjugate poles on the imaginary y-axis
The integral is numerically
gg2[x_, s_] := NIntegrate[ Exp[-(x - y)^2/(2 y s^2)] 1/(1 + y^2) 1/Sqrt[2 \[Pi] y s^2], {y, 0, \[Infinity]}]
The first 3 terms of the s-expansion are
fs2[x, s]
(* {1/(1 + x^2), (s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5} *)
Graphs up to order s^4 for two values of s are
With[{s = 1}, Plot[{gg2[x, s], {1/(1 + x^2), ( s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+\!\(\*SuperscriptBox[\(y\), \ \(2\)]\)), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg2[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = f(x)\n\ brown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = \ O(\!\(\*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f2 _s0-9.jpg *)

With[{s = 0.4}, Plot[{gg2[x, s], {1/(1 + x^2), ( s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = \ 1/(1+\!\(\*SuperscriptBox[\(y\), \(2\)]\)), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg2[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = \ f(x)\nbrown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = O(\!\(\ \*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f2 _s0-4.jpg *)
