Skip to main content
Expamples of s-expansions for two functions other than powrs
Source Link

$$\sum _{j=0}^{\infty } \frac{s^{2 j} }{j!2^{j}}\frac{\partial ^{2 j}\left(f(x) x^j\right)}{\partial x^{2 j}}$$$$fs = \sum _{j=0}^{\infty } \frac{s^{2 j} }{j!2^{j}}\frac{\partial ^{2 j}\left(f(x) x^j\right)}{\partial x^{2 j}}$$

We see that the agreement is what is to expected in the sense of an asymptotic expansion.

Conclusion: the formula for $fs$ seems to be valid for a broader class of function.

$$\sum _{j=0}^{\infty } \frac{s^{2 j} }{j!2^{j}}\frac{\partial ^{2 j}\left(f(x) x^j\right)}{\partial x^{2 j}}$$

$$fs = \sum _{j=0}^{\infty } \frac{s^{2 j} }{j!2^{j}}\frac{\partial ^{2 j}\left(f(x) x^j\right)}{\partial x^{2 j}}$$

We see that the agreement is what is to expected in the sense of an asymptotic expansion.

Conclusion: the formula for $fs$ seems to be valid for a broader class of function.

Expamples of s-expansions for two functions other than powrs
Source Link

Let me add the general expansion in the form of Till Hoffmann, which I call s-expansion in the following

It is very interesting that this expression seems to hold not only for the powers of y considered up to now but for more general functionfunctions f(y). I have successfully tested $f(x)=\frac{1}{y+1}$, and I shall continue

In order to verify this investigationhypothesis we shall study examples for other functions than simple powers of the s-expansion fs of our integral.

The s-expansion with a function f is given by

fs[x_, s_, f_, n_] := Sum[s^(2 j) 1/(j! 2^j) D[x^(j) f, {x, 2 j}], {j, 0, n}] 

Example 1: Simple pole on the negative real y-axis

The integral is numerically

gg1[x_, s_] := NIntegrate[ Exp[-(x - y)^2/(2 y s^2)] 1/(1 + y) 1/Sqrt[2 \[Pi] y s^2], {y,0, \[Infinity]}] 

The first 3 terms of the s-expansion are

fs1[x_, s_] = Table[fs[x, s, 1/(1 + x), k], {k, 0, 2}] // Simplify (* {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5} *) 

Graphs up to order s^4 for two values of s are

With[{s = 1}, Plot[{gg1[x, s], {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+y), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg1[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = f(x)\n\ brown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = \ O(\!\(\*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f1 _s1.jpg *) 

enter image description here

With[{s = 0.3}, Plot[{gg1[x, s], {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+y), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg1[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = \ f(x)\nbrown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = O(\!\(\ \*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f1 _s0-3.jpg *) 

enter image description here

Example 2: Simple conjugate poles on the imaginary y-axis

The integral is numerically

gg2[x_, s_] := NIntegrate[ Exp[-(x - y)^2/(2 y s^2)] 1/(1 + y^2) 1/Sqrt[2 \[Pi] y s^2], {y, 0, \[Infinity]}] 

The first 3 terms of the s-expansion are

fs2[x, s]

(* {1/(1 + x^2), (s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5} *) 

Graphs up to order s^4 for two values of s are

With[{s = 1}, Plot[{gg2[x, s], {1/(1 + x^2), ( s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+\!\(\*SuperscriptBox[\(y\), \ \(2\)]\)), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg2[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = f(x)\n\ brown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = \ O(\!\(\*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f2 _s0-9.jpg *) 

enter image description here

With[{s = 0.4}, Plot[{gg2[x, s], {1/(1 + x^2), ( s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = \ 1/(1+\!\(\*SuperscriptBox[\(y\), \(2\)]\)), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg2[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = \ f(x)\nbrown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = O(\!\(\ \*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f2 _s0-4.jpg *) 

enter image description here

Let me add the general expansion in the form of Till Hoffmann

It is very interesting that this expression seems to hold not only for the powers of y considered up to now but for more general function. I have successfully tested $f(x)=\frac{1}{y+1}$, and I shall continue this investigation.

Let me add the general expansion in the form of Till Hoffmann, which I call s-expansion in the following

It is very interesting that this expression seems to hold not only for the powers of y considered up to now but for more general functions f(y).

In order to verify this hypothesis we shall study examples for other functions than simple powers of the s-expansion fs of our integral.

The s-expansion with a function f is given by

fs[x_, s_, f_, n_] := Sum[s^(2 j) 1/(j! 2^j) D[x^(j) f, {x, 2 j}], {j, 0, n}] 

Example 1: Simple pole on the negative real y-axis

The integral is numerically

gg1[x_, s_] := NIntegrate[ Exp[-(x - y)^2/(2 y s^2)] 1/(1 + y) 1/Sqrt[2 \[Pi] y s^2], {y,0, \[Infinity]}] 

The first 3 terms of the s-expansion are

fs1[x_, s_] = Table[fs[x, s, 1/(1 + x), k], {k, 0, 2}] // Simplify (* {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5} *) 

Graphs up to order s^4 for two values of s are

With[{s = 1}, Plot[{gg1[x, s], {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+y), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg1[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = f(x)\n\ brown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = \ O(\!\(\*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f1 _s1.jpg *) 

enter image description here

With[{s = 0.3}, Plot[{gg1[x, s], {1/(1 + x), (-s^2 + (1 + x)^2)/(1 + x)^3, ( 3 s^4 - s^2 (1 + x)^2 + (1 + x)^4)/(1 + x)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+y), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg1[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = \ f(x)\nbrown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = O(\!\(\ \*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f1 _s0-3.jpg *) 

enter image description here

Example 2: Simple conjugate poles on the imaginary y-axis

The integral is numerically

gg2[x_, s_] := NIntegrate[ Exp[-(x - y)^2/(2 y s^2)] 1/(1 + y^2) 1/Sqrt[2 \[Pi] y s^2], {y, 0, \[Infinity]}] 

The first 3 terms of the s-expansion are

fs2[x, s]

(* {1/(1 + x^2), (s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5} *) 

Graphs up to order s^4 for two values of s are

With[{s = 1}, Plot[{gg2[x, s], {1/(1 + x^2), ( s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = 1/(1+\!\(\*SuperscriptBox[\(y\), \ \(2\)]\)), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg2[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = f(x)\n\ brown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = \ O(\!\(\*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f2 _s0-9.jpg *) 

enter image description here

With[{s = 0.4}, Plot[{gg2[x, s], {1/(1 + x^2), ( s^2 x (-3 + x^2) + (1 + x^2)^2)/(1 + x^2)^3, ( s^2 x (-3 + x^2) (1 + x^2)^2 + (1 + x^2)^4 - 3 s^4 (1 - 10 x^2 + 5 x^4))/(1 + x^2)^5}}, {x, -1, 2}, PlotRange -> {0, 1.5}, ImageSize -> 400, PlotLabel -> Style["s-expansion of integral\nf(y) = \ 1/(1+\!\(\*SuperscriptBox[\(y\), \(2\)]\)), s = " <> ToString[s] <> "\n", 14], AxesLabel -> {"x", "gg2[x]"}, Epilog -> {Text[ Style["Legend of curves:\nblue = integral, numeric (gg1)\nred = \ f(x)\nbrown = O(\!\(\*SuperscriptBox[\(s\), \(2\)]\))\ngreen = O(\!\(\ \*SuperscriptBox[\(s\), \(4\)]\))", Medium], {1, 1.2}]}]] (* 150228_s-expansion_f2 _s0-4.jpg *) 

enter image description here

Write down general expansion, and observe that it holds for more general functions.
Source Link

EDIT (Dr. Wolfgang Hintze, 28.02.15)

Let me add the general expansion in the form of Till Hoffmann

$$\sum _{j=0}^{\infty } \frac{s^{2 j} }{j!2^{j}}\frac{\partial ^{2 j}\left(f(x) x^j\right)}{\partial x^{2 j}}$$

It is very interesting that this expression seems to hold not only for the powers of y considered up to now but for more general function. I have successfully tested $f(x)=\frac{1}{y+1}$, and I shall continue this investigation.

EDIT (Dr. Wolfgang Hintze, 28.02.15)

Let me add the general expansion in the form of Till Hoffmann

$$\sum _{j=0}^{\infty } \frac{s^{2 j} }{j!2^{j}}\frac{\partial ^{2 j}\left(f(x) x^j\right)}{\partial x^{2 j}}$$

It is very interesting that this expression seems to hold not only for the powers of y considered up to now but for more general function. I have successfully tested $f(x)=\frac{1}{y+1}$, and I shall continue this investigation.

Loading
Source Link
Loading