Skip to main content
Language and more detailed
Source Link
Jacob Akkerboom
  • 12.3k
  • 47
  • 87

I have a integral, but and I use two different symbols in an interchangeable way, but canI do not get same expressions when I swap them. Can some one explain why?

Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y}, Assumptions -> 0 < y < x] 
Log[(x + y + 2 Sqrt[x y])/(x - y)] 
Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x}, Assumptions -> 0 < x < y] 
2 ArcTanh[Sqrt[x/y]] 

I have a integral, but I use two different symbols, but can not get same expressions. Can some one explain why?

Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y}, Assumptions -> 0 < y < x] 
Log[(x + y + 2 Sqrt[x y])/(x - y)] 
Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x}, Assumptions -> 0 < x < y] 
2 ArcTanh[Sqrt[x/y]] 

I have a integral and I use two different symbols in an interchangeable way, but I do not get same expressions when I swap them. Can some one explain why?

Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y}, Assumptions -> 0 < y < x] 
Log[(x + y + 2 Sqrt[x y])/(x - y)] 
Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x}, Assumptions -> 0 < x < y] 
2 ArcTanh[Sqrt[x/y]] 
Routine clean-up
Source Link
m_goldberg
  • 108.6k
  • 16
  • 107
  • 263

Can someone explain why mathematica is so "silly"? Evaluating two equivalent integrals apparently gives two different results

I have a integral, but I use two different symbols, but can not get same expressions. Can some one explain why?[![enter image description here][1]]

Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y},  Assumptions -> 0 < y < x] (*Out= Log[(x + y + 2 Sqrt[x y])/(x - y)]*)  
Log[(x + y + 2 Sqrt[x y])/(x - y)] 
Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x},  Assumptions -> 0 < x < y] (*Out= 2 ArcTanh[Sqrt[x/y]]*) 
2 ArcTanh[Sqrt[x/y]] 

Can someone explain why mathematica is so "silly"?

I have a integral, but I use two different symbols, but can not get same expressions. Can some one explain why?[![enter image description here][1]]

Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y},  Assumptions -> 0 < y < x] (*Out= Log[(x + y + 2 Sqrt[x y])/(x - y)]*)  Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x},  Assumptions -> 0 < x < y] (*Out= 2 ArcTanh[Sqrt[x/y]]*) 

Evaluating two equivalent integrals apparently gives two different results

I have a integral, but I use two different symbols, but can not get same expressions. Can some one explain why?

Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y}, Assumptions -> 0 < y < x] 
Log[(x + y + 2 Sqrt[x y])/(x - y)] 
Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x}, Assumptions -> 0 < x < y] 
2 ArcTanh[Sqrt[x/y]] 
Provide the mathematica expressions
Source Link
yohbs
  • 7.1k
  • 3
  • 30
  • 61

I have a integral, but I use two different symbols, but can not get same expressions. Can some one explain why?enter image description here[![enter image description here][1]]

In[326]:= Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y}, Assumptions -> 0 < y < x] Out[326]=(*Out= Log[(x + y + 2 Sqrt[x y])/(x - y)]]*) In[328]:= Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x}, Assumptions -> 0 < x < y] Out[328]=(*Out= 2 ArcTanh[Sqrt[x/y]]y]]*) 

I have a integral, but I use two different symbols, but can not get same expressions. Can some one explain why?enter image description here

In[326]:= Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y}, Assumptions -> 0 < y < x] Out[326]= Log[(x + y + 2 Sqrt[x y])/(x - y)] In[328]:= Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x}, Assumptions -> 0 < x < y] Out[328]= 2 ArcTanh[Sqrt[x/y]] 

I have a integral, but I use two different symbols, but can not get same expressions. Can some one explain why?[![enter image description here][1]]

Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, y}, Assumptions -> 0 < y < x] (*Out= Log[(x + y + 2 Sqrt[x y])/(x - y)]*) Integrate[1/Sqrt[(x - t) (y - t)], {t, 0, x}, Assumptions -> 0 < x < y] (*Out= 2 ArcTanh[Sqrt[x/y]]*) 
Source Link
xjtan
  • 133
  • 4
Loading