I need to plot g1, g2, g3 and g4 expressions. To do that, I am trying to evaluate the double defined integral in the three expressions, however I am having issues because one of the integration limits (alpha) is function of w. The resultante error says:
NIntegrate::nlim: α = α is not a valid limit of integration.
The question here is how can I compute a definite integral if I have a symbolic limit? Is it possible to do that?
Otherwise, is there anothet way to calculate and plot these expressions solving the indefinite integral?
Thanks in advance.
d = 0.0254; ad = 0.3; a = ad*d; young = 210 10^9; iner = (Pi/64)*d^4; ld = 24; L = ld*d; wcord = Sqrt[a*(d - a)]; α = a - (d/2) + Sqrt[((d/2)^2) - (w^2)]; αp = Sqrt[d^2 - (2*w)^2]; rα = α/αp; F = Sqrt[(2*αp)/(Pi*α)*Tan[(Pi*α)/(2*αp)]]*((0.923 + 0.199*(1 - Sin[(Pi*[Alpha])/(2*αp)])^4)/Cos[(Pi*α)/(2*αp)]); Fp = Sqrt[(2*αp)/(Pi*α)*Tan[(Pi*α)/(2*αp)]]*((0.752 + 2.02*rα + 0.37*(1 - Sin[(Pi*α)/(2*αp)])^3)/Cos[(Pi*α)/(2*αp)]); flxbInt = L^3/(48*young*iner) ; g1 = flxbInt + 2*(NIntegrate[((128*(L^2)*(αp^2))/(young*Pi*(d^8)))*α*F^2, {α, 0, α}, {w, 0, wcord}]) g4 = flxbInt + 2*(NIntegrate[((512*(L^2)*(w^2))/(young*Pi*(d^8)))*α*Fp^2, {α, 0, α}, {w, 0, wcord}]) g2 = g3 = 2*(NIntegrate[((256*(L^2)*αp*w)/(young*Pi*(d^8)))*α*F*Fp, {α, 0, α}, {w, 0, wcord}]) 
F; also, change the dummy integration variable. $\endgroup$