I did some computation of formal derivatives a while back which might be of interest in this context (though keep in mind that this is anything but bullet proof! it does work for the cases I bothered to check though).
Clear[a]; Format[a[k_]] = Subscript[a, k]
Let us say we have an objective function which is formally a function of the vector a[i]
Q = Sum[Log[Sum[a[r] Subscript[B, r][Subscript[x, i]], {r, 1, p}]/ Sum[a[r] , {r, 1, p}]], {i, 1, n}]

Let us define a couple of rules for formal differentiation as follows
Clear[d]; d[Log[x_], a[k_]] := 1/x d[x, a[k]] d[Sum[x_, y__], a[k_]] := Sum[d[x, a[k]], y] d[ a[k_] b_., a[k_]] := b /; FreeQ[b, a] d[ a[q_] b_., a[k_]] := b Subscript[δ, k, q] /; FreeQ[b, a] d[ c_ b_, a[k_]] := d[c, a[k]] b + d[b, a[k]] c d[ b_ + c_, a[k_]] := d[c, a[k]] + d[b, a[k]] d[Subscript[δ, r_, q_], a[k_]] := 0 d[x_, a[k_]] := 0 /; FreeQ[x, a] d[G_^n_, a[k_]] := n G^(n - 1) d[G , a[k]] /; ! FreeQ[G, a] d[Exp[G_], a[q_]] := Exp[G] d[G , a[q]] /; ! FreeQ[G, a] Unprotect[Sum]; Attributes[Sum] = {ReadProtected};Protect[Sum];
And a rule to deal with Kroneckers
ds = {Sum[a_ + b_, {s_, 1, p_}] :> Sum[a, {s, 1, p}] + Sum[b, {s, 1, p}], Sum[ y_ Subscript[δ, r_, s_], {s_, 1, p_}] :> (y /. s -> r), Sum[ y_ Subscript[δ, s_, r_], {s_, 1, p_}] :> (y /. s -> r), Sum[ Subscript[δ, s_, r_], {r_, 1, p_}] :> 1, Sum[δ[i_, k_] δ[j_, k_] y_. , {k_, n_}] -> δ[i, j] (y /. k -> i), Sum[a_ b_, {r_, 1, p_}] :> a Sum[b, {r, 1, p}] /; NumberQ[a], Sum[a__, {r_, 1, p_}] :> Sum[Simplify[a], {r, 1, p}] }
Then, for instance, the gradient of Q with respect to one of the a[k] reads
grad = d[Q, a[k]] /. ds // Simplify;

Similarly the tensor of second derivatives w.r.t. a[k] and a[s] is given by
hess = d[d[Q, a[k]], a[s]] /. ds // Simplify
As a less trivial example let us consider the 4th order derivatives of Q
d[d[d[d[Q, a[k]], a[s]], a[m]], a[t]]; /. ds // Simplify

For the problem at hand we check easily that
Q = Sum[r a[r] , {r, 1, p}]; grad = d[Q, a[k]] // Simplify; grad //. ds
returns k as it should
EDIT
This process can be made a bit more general, say, on this Objective function
Q = 1/2 Sum[(Sum[a[r] Subscript[B, r, i][a[q]], {r, 1, p}] - Subscript[y, i])^2, {i, 1, n}]
which depends non linearly on a[k] via B.
All we need is to add a new rule for d
d[H_[a[q_]], a[k_]] := (D[H[x] , x] /. x -> a[k] ) Subscript[δ, k, q]
Now we readily have
grad = d[Q, a[k]] // Simplify; hess = d[d[Q, a[k]], a[s]]; grad //. ds

hess /. ds // Simplify

As a other example, let us look at a parametrized entropy distance,
Q = -Sum[(Sum[a[r] Subscript[B, r, i], {r, 1, p}]/ Subscript[y, i]) Log[(Sum[a[r] Subscript[B, r, i], {r, 1, p}]/ Subscript[y, i])], {i, 1, n}]

we can compute its Hessian while mapping twice the sum rule
Map[# /. ds &, d[d[Q, a[k]], a[s]] /. ds]

As a final example, consider a Poisson likelihood
Q = Sum[Log[Exp[-a[k]] a[k]^Subscript[y, k]/Subscript[y, k]!], {k, 1, n}]

so that
grad = d[Q, a[k]] // Simplify

and
hess =d[d[Q, a[k]], a[s]] /. ds // Simplify

Of course these algebraic rules are not bullet proof but illustrate nicely the way mathematica handles new grammar.
D[sum[n], x[2]]is essentially the same as evaluatingD[Sum[n, y], x[2]], whereyis value-free, which is nothingDrecognizes as depending onx[2]. $\endgroup$Infinityto an acceptable value forn? What would the effect be upon processing speed for specific-length objects? $\endgroup$