ParametricPlot3D[ Table[{r Cos[t] Sin[s], r Sin[t] Sin[s], r Cos[s]}, {r, 1, 2, .02}] // Evaluate, {s, 0, Pi/2}, {t, 0, Pi/2}, ImageSize -> Large]
Another Way
If we use the implicit expression of sphere, we can also construct the solids and it's complement by a relatively complex way.
SetOptions[ContourPlot3D, Boxed -> False, Axes -> False, Lighting -> Automatic, BoundaryStyle -> None, Mesh -> {{0}, {0}, {0}}]; f1 = x^2 + y^2 + z^2 - 1^2; f2 = x^2 + y^2 + z^2 - 2^2; f3 = x; f4 = y; f5 = z; pureFun[f_] := (Evaluate[ f /. {x -> Slot@1, y -> Slot@2, z -> Slot@3}]) &; s1 = ContourPlot3D[f1 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, MeshFunctions -> pureFun /@ {f3, f4, f5}, MeshShading -> {{{None, None}, {None, None}}, {{None, StippleShading[0.9]}, {None, None}}}, MeshStyle -> None]; s2 = ContourPlot3D[f2 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f3, f4, f5}, MeshShading -> {{{None, None}, {None, None}}, {{None, HatchShading[]}, {None, None}}}, MeshStyle -> None]; s3 = ContourPlot3D[f3 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f1, f2, f4, f5}, MeshShading -> {{{{None, None}, {None, None}}, {{None, None}, {None, None}}}, {{{None, HalftoneShading[0.6, Orange]}, {None, None}}, {{None, None}, {None, None}}}}, MeshStyle -> None]; s4 = ContourPlot3D[f4 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f1, f2, f3, f5}, MeshShading -> {{{{None, None}, {None, None}}, {{None, None}, {None, None}}}, {{{None, None}, {None, None}}, {{None, HalftoneShading[0.6, Orange]}, {None, None}}}}, MeshStyle -> None]; s5 = ContourPlot3D[f5 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f1, f2, f3, f4}, MeshShading -> {{{{None, None}, {None, None}}, {{None, HalftoneShading[0.8, Orange]}, {None, None}}}, {{{None, None}, {None, None}}, {{None, None}, {None, None}}}}, MeshStyle -> None]; Show[s1, s2, s3, s4, s5, PlotRange -> All]

The Complement
SetOptions[ContourPlot3D, Boxed -> False, Axes -> False, Lighting -> Automatic, BoundaryStyle -> None, Mesh -> {{0}, {0}, {0}}]; f1 = x^2 + y^2 + z^2 - 1^2; f2 = x^2 + y^2 + z^2 - 2^2; f3 = x; f4 = y; f5 = z; pureFun[f_] := (Evaluate[ f /. {x -> Slot@1, y -> Slot@2, z -> Slot@3}]) &; s1 = ContourPlot3D[f1 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, MeshFunctions -> pureFun /@ {f3, f4, f5}, MeshShading -> {{{None, None}, {None, None}}, {{None, StippleShading[0.9]}, {None, None}}}, MeshStyle -> None]; s2 = ContourPlot3D[f2 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f3, f4, f5}, MeshShading -> {{{HatchShading[], HatchShading[]}, {HatchShading[], HatchShading[]}}, {{HatchShading[], None}, {HatchShading[], HatchShading[]}}}, MeshStyle -> None]; s3 = ContourPlot3D[f3 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f1, f2, f4, f5}, MeshShading -> {{{{None, None}, {None, None}}, {{None, None}, {None, None}}}, {{{None, HalftoneShading[0.6, Orange]}, {None, None}}, {{None, None}, {None, None}}}}, MeshStyle -> None]; s4 = ContourPlot3D[f4 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f1, f2, f3, f5}, MeshShading -> {{{{None, None}, {None, None}}, {{None, None}, {None, None}}}, {{{None, None}, {None, None}}, {{None, HalftoneShading[0.6, Orange]}, {None, None}}}}, MeshStyle -> None]; s5 = ContourPlot3D[f5 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, MeshFunctions -> pureFun /@ {f1, f2, f3, f4}, MeshShading -> {{{{None, None}, {None, None}}, {{None, HalftoneShading[0.8, Orange]}, {None, None}}}, {{{None, None}, {None, None}}, {{None, None}, {None, None}}}}, MeshStyle -> None]; Show[s1, s2, s3, s4, s5, PlotRange -> All]

Graphics3D[sphericalSegment[{1, 2}, {0, Pi/2}, {0, Pi/2}]]) -- Related: mathematica.stackexchange.com/questions/17464/… $\endgroup$