It is not so simple because of many parameters (which are assumed real). Unfortunately,
ContourIntegrate[ Exp[-I*(\[Omega] - \[Omega]0)* t]/(\[Lambda]^2 + (\[Omega] - \[Omega]0)^2), \[Omega] \[Element] HalfPlane[{{0, 0}, {1, 0}}, {0, -1}], Assumptions -> t \[Element] Reals && \[Omega]0 \[Element] Reals && R > 0 && \[Lambda] > 0]
returns the input. In view of it we consider
j = -ContourIntegrate[Exp[-I*(\[Omega] - \[Omega]0)* t]/(\[Lambda]^2 + (\[Omega] - \[Omega]0)^2), \[Omega] \[Element] Disk[{0, 0}, R, {Pi, 2*Pi}], Assumptions -> t \[Element] Reals && \[Omega]0 \[Element] Reals && R > 0 && \[Lambda] > 0]
ConditionalExpression[-Piecewise[{{((-1 + E^(2*t*\[Lambda]))*Pi)/(E^(t*\[Lambda])*\[Lambda]), Abs[\[Lambda] + I*\[Omega]0]/R < 1 && Arg[(-I)*\[Lambda] + \[Omega]0] < 0 && Abs[\[Lambda] - I*\[Omega]0]/R < 1 && Arg[I*\[Lambda] + \[Omega]0] < 0}, {-(Pi/(E^(t*\[Lambda])*\[Lambda])), Abs[\[Lambda] + I*\[Omega]0]/R < 1 && Arg[(-I)*\[Lambda] + \[Omega]0] < 0}, {(E^(t*\[Lambda])*Pi)/\[Lambda], Abs[\[Lambda] - I*\[Omega]0]/R < 1 && Arg[I*\[Lambda] + \[Omega]0] < 0}}, 0], (R != Abs[\[Lambda] - I*\[Omega]0] || Arg[I*\[Lambda] + \[Omega]0] >= 0) && (R != Abs[\[Lambda] + I*\[Omega]0] || Arg[(-I)*\[Lambda] + \[Omega]0] >= 0) && !((Abs[\[Lambda] - I*\[Omega]0]/R <= 1 && (Arg[I*\[Lambda] + \[Omega]0] == Pi || Arg[I*\[Lambda] + \[Omega]0] == 0)) || (Abs[\[Lambda] + I*\[Omega]0]/R <= 1 && (Arg[(-I)*\[Lambda] + \[Omega]0] == Pi || Arg[I*\[Lambda] + \[Omega]0] == 0)))]
We may assume Abs[\[Lambda] + I*\[Omega]0]/R < 1 because R will tend to infinity:
j = -ContourIntegrate[Exp[-I*(\[Omega] - \[Omega]0)* t]/(\[Lambda]^2 + (\[Omega] - \[Omega]0)^2), \[Omega] \[Element] Disk[{0, 0}, R, {Pi, 2*Pi}], Assumptions -> t \[Element] Reals && \[Omega]0 \[Element] Reals && R > 0 && \[Lambda] > 0 && Abs[\[Lambda] + I*\[Omega]0]/R < 1]
ConditionalExpression[-Piecewise[{{((-1 + E^(2*t*\[Lambda]))*Pi)/(E^(t*\[Lambda])*\[Lambda]), Arg[(-I)*\[Lambda] + \[Omega]0] < 0 && Abs[\[Lambda] - I*\[Omega]0]/R < 1 && Arg[I*\[Lambda] + \[Omega]0] < 0}, {-(Pi/(E^(t*\[Lambda])*\[Lambda])), Arg[(-I)*\[Lambda] + \[Omega]0] < 0}, {(E^(t*\[Lambda])*Pi)/\[Lambda], Abs[\[Lambda] - I*\[Omega]0]/R < 1 && Arg[I*\[Lambda] + \[Omega]0] < 0}}, 0], (R != Abs[\[Lambda] - I*\[Omega]0] || Arg[I*\[Lambda] + \[Omega]0] >= 0) && Arg[(-I)*\[Lambda] + \[Omega]0] != Pi && Arg[I*\[Lambda] + \[Omega]0] != 0 && (Arg[I*\[Lambda] + \[Omega]0] != Pi || Abs[\[Lambda] - I*\[Omega]0]/R > 1)]
Now
FullSimplify[j, Assumptions -> Abs[\[Lambda] - I*\[Omega]0]/R < 1]
-ConditionalExpression[Piecewise[ {{(2*Pi*Sinh[t*\[Lambda]])/\[Lambda], Arg[(-I)*\[Lambda] + \[Omega]0] < 0 && Arg[I*\[Lambda] + \[Omega]0] < 0}, {-(Pi/(E^(t*\[Lambda])*\[Lambda])), Arg[(-I)*\[Lambda] + \[Omega]0] < 0}, {(E^(t*\[Lambda])*Pi)/\[Lambda], Arg[I*\[Lambda] + \[Omega]0] < 0}}, 0], Arg[(-I)*\[Lambda] + \[Omega]0] != Pi && Arg[I*\[Lambda] + \[Omega]0] != 0 && Arg[I*\[Lambda] + \[Omega]0] != Pi]
and, tending R to infinity,
Limit[%, R -> Infinity]
ConditionalExpression[-Piecewise[ {{(2*Pi*Sinh[t*\[Lambda]])/\[Lambda], Arg[(-I)*\[Lambda] + \[Omega]0] < 0 && Arg[I*\[Lambda] + \[Omega]0] < 0}, {-(Pi/(E^(t*\[Lambda])*\[Lambda])), Arg[(-I)*\[Lambda] + \[Omega]0] < 0}, {(E^(t*\[Lambda])*Pi)/\[Lambda], Arg[I*\[Lambda] + \[Omega]0] < 0}}, 0], Arg[(-I)*\[Lambda] + \[Omega]0] != Pi && Arg[I*\[Lambda] + \[Omega]0] != 0 && Arg[I*\[Lambda] + \[Omega]0] != Pi]
We can get rid of Arg[-I \[Lambda] + \[Omega]0] != \[Pi] && Arg[I \[Lambda] + \[Omega]0] != 0 && Arg[I \[Lambda] + \[Omega]0] != \[Pi].
Edit. The minus sign is added since the boundary of the lower half-disk is oriented counterclockwise.
Edi 2. A typo - instead of = in the last ConditionalExpression in the answer.
Integratein the documentation. In there, you will see many examples of proper syntax, and there should be examples doing contour integration as well. Alternatively, you can look upResiduein order to compute the integral using direct residue integration rather than computing the contour. $\endgroup$Integrate[ Exp[-I*(\[Omega] - \[Omega]0)* t]/(\[Lambda]^2 + (\[Omega] - \[Omega]0)^2), {\[Omega], -Infinity, Infinity}, Assumptions -> t \[Element] Reals && \[Omega]0 \[Element] Reals && \[Lambda] > 0]results in a long analytic expression in terms ofSinIntegralansCosIntegral. $\endgroup$