Here is an approach using linear regression:
circfit[pts_] := Module[{reg, lm, bf, exp, center, rad}, reg = {2 #1, 2 #2, #2^2 + #1^2} & @@@ pts; lm = LinearModelFit[reg, {1, x, y}, {x, y}]; bf = lm["BestFitParameters"]; exp = (x - #2)^2 + (y - #3)^2 - #1 - #2^2 - #3^2 & @@ bf; {center, rad} = {{#2, #3}, Sqrt[#2^2 + #3^2 + #1]} & @@ bf; circlefit[{"expression" -> exp, "center" -> center, "radius" -> rad}]]; circlefit[list_][field_] := field /. list; circlefit[list_]["Properties"] := list /. Rule[field_, _] :> field; circlefit /: ReplaceAll[fields_, circlefit[list_]] := fields /. list; Format[circlefit[list_], StandardForm] := HoldForm[circlefit]["<" <> ToString@Length@list <> ">"]
This assumes that underlying data is a circle and aim is to find center and radius. There are doubtless much better ways.
For fun (and done quickly, so apologies for some inefficiencies and ugliness):
Manipulate[ pt1 = Table[{x, cy + Sqrt[rad^2 - (x - cx)^2]}, {x, -4, 4, 0.1}]; pt2 = Table[{x, cy - Sqrt[rad^2 - (x - cx)^2]}, {x, -4, 4, 0.1}]; pt = Cases[Join[pt1, pt2], {_Real, _Real}]; pts = pt + RandomReal[{-p, p}, {Length[pt], 2}]; With[{fit = circfit[pts]}, Column[{Show[ ContourPlot[Evaluate@fit["expression"], {x, -1, 8}, {y, -1, 8}, Contours -> {0}, ContourShading -> None, ContourStyle -> Directive[Red, Thick]], ListPlot[pts], AspectRatio -> Automatic, PlotLabel -> fit["expression"] == 0, ImageSize -> 400, PlotRange -> {{-1, 8}, {-1, 8}}], Grid[{{"variable", "value", "model"}, {"center", {cx, cy}, fit["center"]}, {"radius", rad, fit["radius"]}}] }]], {p, 0.05, 1}, {cx, 0, 2}, {cy, 0, 2}, {rad, 1, 5} ]

yin either your data or in the actual code that you used, but did not show here. Please inspect your data, and/or quit the kernel and try again. $\endgroup$