I have given the following expression in $M$ and $z$: \begin{equation} a = \frac{-4 M^2+M (-3 z-5)+\frac{1.1875 z}{\sqrt{\frac{0.015625 z}{M+1}-1.5625} \sqrt{\frac{0.765625 z}{M+1}-0.5625}}-1}{M+0.75 z+1} \tag{1} \end{equation} In Mathematica, this is
a = (-1. - 4. M^2 + M (-5. - 3. z) + (1.1875 z) / (Sqrt[-1.5625 + (0.015625 z)/(1 + M)] Sqrt[-0.5625 + (0.765625 z)/(1 + M)]))/(1. + 1. M + 0.75 z) If I set this expression to $0$ and solve for $M$, I get the 5 roots as
Solve[a == 0, M] (* {{M -> Root[900.0 - 1909.0 z + \(9900.0 - 13690.0 z + 98.0 z^2) #1 + \(38700.0 - 30597.0 z - 14514.0 z^2 + 147.0 z^3) #1^2 + \(65700.0 - 27760.0 z - 14612.0 z^2) #1^3 + \(50400.0 - 8944.0 z) #1^4 + 14400.0 #1^5 &, 1]}, <<4>>} *) (To clean the output, I truncated all trailing zeros but the first.)
Is there a way to transform expression $a$ to the polynomial given in Root[]? Maybe with RootReduce?
I only managed to get the expression to the following form by manual manipulation:
b = Expand[Together[a]*Denominator[Together[a]]]; c = b[[1]]^2 == (-b[[2;;Length[b]]])^2 // (Head[#][Subtract@@#,0] &); d = Collect[Together[c[[1]]]*Denominator[Together[c[[1]]]], M] (* -14.0625 M^6 - 0.107666 M^5 (587.755 + 16.8345 z) -0.107666 M^4 (1053.06 + 9.94104 z - 193.379 z^2) -0.107666 M^3 (946.939 - 82.3764 z - 453.025 z^2 - 98.068 z^3) -0.107666 M^2 (440.816 - 138.431 z - 338.9 z^2 - 97.4014 z^3 + 1. z^4) -0.107666 M (97.9592 - 74.1406 z - 92.2404 z^2 + 0.666667 z^3) -0.107666 (8.16327 - 11.1927 z - 12.9864 z^2) *) I induced an additional root
Solve[Denominator[a] == 0, M] (* {{M -> -1. - 0.75 z}} *) which shows in
Solve[d == 0, M] So without this additional root,
e = Chop[Collect[PolynomialQuotient[d, M - Solve[Denominator[a] == 0, M][[1,1,2]], M], M]] (* -14.0625 M^5 + M^4 (-49.2188 + 8.73437 z) + M^3 (-64.1602 + 27.1094 z + 14.2695 z^2) + M^2 (-37.793 + 29.8799 z + 14.1738 z^2 - 0.143555 z^3) + M (-9.66797 + 13.3691 z - 0.0957031 z^2) -0.878906 + 1.86426 z *) this is, modulo renormalization by $14400/14.0625$, the root witch Mathematica found by Solve[a == 0, M].
How does Solve bring expression $a$ in canonical polynomial form, on which it applies Root?