I have the following function
partitionfunction[d_][q_] := Piecewise[{ {Sin[(Pi*q)/(2*d)]^2, Inequality[0, LessEqual, q, Less, d]}, {1, Inequality[d, LessEqual, q, Less, 2*Pi - d]}, {Sin[(Pi*(2*Pi - q))/(2*d)]^2, 2*Pi - d <= q <= 2*Pi}}] radius[d_][q_] := 1 + 1.5*partitionfunction[d][q]*BesselJ[5, (13/(2*Pi))*q + 5] curve[d_][q_] := radius[d][q]*{Cos[q], Sin[q]} which I use to generate the following plot
ParametricPlot[curve[1][q], {q, 0, 2*Pi}, Axes -> False, PlotPoints -> 50, PlotStyle -> Thickness[0.007]] So far so good. But when I try to fill the enclosed area, I get a strange white polygon.
ParametricPlot[curve[1][q], {q, 0, 2*Pi}, Axes -> False, PlotPoints -> 50, PlotStyle -> Thickness[0.007]] /. Line[l_List] :> {{Orange, Polygon[l]}, {Black, Line[l]}} Also the filling goes outside the boundary.
Any ideas to fix this behavior?
EDIT
Searching here I try this
g = ParametricPlot[curve[1][q], {q, 0, 2*Pi}, Axes -> False, PlotPoints -> 50, PlotStyle -> Thickness[0.007]] line = Cases[g, l_Line :> First @ l, Infinity]; Graphics[ {Opacity[0.4], Darker @ Orange, EdgeForm[Darker @ Orange], Polygon[line]}, Options[g]] The polygon is still evident, but this time the filling does not go outside the boundary.




curve? $\endgroup$curveI think that the problem can be solved withExclusions->None. $\endgroup$Exclusions->Nonedid indeed solve the issue! Amazing without even seeing the definitions. Thanks! $\endgroup$Exclusions->Noneis necessary here? $\endgroup$