I am trying to find the roots, `λ`, for this equation: 

 Hypergeometric1F1[1/4 (2 -  λ /β), n + 1, β] 

for certain `β` and `n`. Here is my *Mathematica* code.

 eq[n_, β_, λ_] = Hypergeometric1F1[1/4 (2 - λ/β), n + 1, β]

Find the root near `λ = β`.

 ED[n_, β_] := λ /. 
 FindRoot[eq[n, β, λ] == 0, {λ, β}] 

List all `λ`-values for each value of `n` when `β = 0.00001`

 List[ED[0, 0.00001], ED[1, 0.00001], ED[2, 0.00001], ED[3, 0.00001], 
 ED[4, 0.00001], ED[5, 0.00001], ED[6, 0.00001], ED[7, 0.00001], 
 ED[8, 0.00001], ED[9, 0.00001], ED[10, 0.00001]]

Then, I got `{5.78319, 14.682, 26.3746, 40.7064, 57.5829, 76.9388, 98.7262,
122.907, 149.453, 178.337, 209.54}`

However I'm supposed to get `{5.78306, 14.6819, 26.3744, 30.4715, 40.707, 49.2186, 57.5823, 70.8493, 74.8865, 76.9392, 95.2771}`

I guess *Mathematica* gives only one root. How can I also find the 2nd, 3rd, 4th roots, for each value of `n`?