**Definition**
GaussCurvature[f_] :=
With[{dfu = D[f, u], dfv = D[f, v]},
Simplify[(Det[{D[dfu, u], dfu, dfv}] Det[{D[dfv, v], dfu, dfv}] -
Det[{D[f, u, v], dfu, dfv}]^2) / (dfu.dfu dfv.dfv - (dfu.dfv)^2)^2]];
**Sphere**
As @ ubpdqn already remarked
GaussCurvature[{Cos[u] Sin[v], Sin[u] Sin[v], Cos[v]}]
> 1
**Ellipsoid**
ellipsoid = {2 Cos[u] Sin[v], Sin[u] Sin[v], Cos[v]};
cur = GaussCurvature[ellipsoid]
![enter image description here][1]
plo =
Plot3D[cur, {u, 0, Pi}, {v, 0, 2 Pi},
ColorFunction -> "TemperatureMap",
PlotRange -> Full]
![enter image description here][2]
range = Last[PlotRange /. AbsoluteOptions[plo, PlotRange]]
> {0.25, 4.}
ParametricPlot3D[ellipsoid, {u, 0, Pi}, {v, 0, 2 Pi},
Mesh -> False,
ColorFunction -> Function[{x, y, z, u, v},
ColorData["TemperatureMap"][Rescale[cur, range]]],
ColorFunctionScaling -> False]
![enter image description here][3]
**Torus**
torus = {(2 + Cos[v]) Cos[u], (2 + Cos[v]) Sin[u], Sin[v]};
cur = GaussCurvature[torus]
![enter image description here][4]
plo =
Plot3D[cur, {u, 0, 2 Pi}, {v, 0, 2 Pi},
ColorFunction -> "TemperatureMap",
PlotRange -> Full]
![enter image description here][5]
range = Last[PlotRange /. AbsoluteOptions[plo, PlotRange]]
> {-1., 0.333333}
par =
ParametricPlot3D[
torus, {u, 0, 2 Pi}, {v, 0, 2 Pi},
ImageSize -> 400,
Mesh -> False,
ColorFunction -> Function[{x, y, z, u, v},
ColorData["TemperatureMap"][Rescale[cur, range]]],
ColorFunctionScaling -> False,
PlotPoints -> 70];
bar =
BarLegend[{"TemperatureMap", range}, Automatic];
Row[{par, bar}]
![enter image description here][6]
**Moebius with gaussian mesh lines**
f = {Cos[v] (3 + u Cos[v/2]), Sin[v] (3 + u Cos[v/2]), u Sin[v/2]};
cur = GaussCurvature[f];
ParametricPlot3D[f, {u, -1.5, 1.5}, {v, 0, 2 Pi},
Boxed -> False,
PlotStyle -> Opacity[0.8],
ImageSize -> 500,
Mesh -> 12,
PlotPoints -> 120,
MeshFunctions -> Function[{x, y, z, u, v}, Rescale[cur, {-0.04, -0.02}]],
ColorFunction -> Function[{x, y, z, u, v},
ColorData["DarkRainbow"][Rescale[cur, {-0.04, -0.02}]]],
ColorFunctionScaling -> False]
![enter image description here][7]
**Comparison with Mean Curvature**
sincos = {u, v, Sin[u] Cos[v]};
cur = GaussCurvature[sincos];
range = Last[PlotRange /. AbsoluteOptions[plo, PlotRange]];
p1 =
ParametricPlot3D[sincos, {u, 0, 2 Pi}, {v, 0, 2 Pi},
ImageSize -> 500,
Mesh -> 6,
PlotLabel -> Style["Gaussian Curvature\n", 16, Bold],
PlotPoints -> 120,
MeshFunctions -> Function[{x, y, z, u, v}, Rescale[cur, range]],
ColorFunction -> Function[{x, y, z, u, v},
ColorData["Rainbow"][Rescale[cur, range]]],
ColorFunctionScaling -> False];
MeanCurvature[f_] :=
With[{du = D[f, u], dv = D[f, v]},
Simplify[(Det[{D[du, u], du, dv}] * dv.dv -
2 Det[{D[f, u, v], du, dv}] * du.dv + Det[{D[dv, v], du, dv}] * du.du) /
(2 Simplify[(du.du*dv.dv - (du.dv)^2)]^(3/2))]];
cur = MeanCurvature[sincos];
plo = Plot3D[cur, {u, 0, 2 Pi}, {v, 0, 2 Pi}];
range = Last[PlotRange /. AbsoluteOptions[plo, PlotRange]];
p2 =
ParametricPlot3D[sincos, {u, 0, 2 Pi}, {v, 0, 2 Pi},
ImageSize -> 500,
Mesh -> 6,
PlotLabel -> Style["Mean Curvature\n", 16, Bold],
PlotPoints -> 120,
MeshFunctions -> Function[{x, y, z, u, v}, Rescale[cur, range]],
ColorFunction -> Function[{x, y, z, u, v},
ColorData["Rainbow"][Rescale[cur, range]]],
ColorFunctionScaling -> False];
Row[{p1, p2, BarLegend[{"Rainbow", range}, LegendMarkerSize -> 400]}]
![enter image description here][8]
**A nice novel about Gauss**
![enter image description here][9]
[1]: https://i.sstatic.net/u670E.jpg
[2]: https://i.sstatic.net/bQ7WV.jpg
[3]: https://i.sstatic.net/FbVEj.jpg
[4]: https://i.sstatic.net/wkdun.jpg
[5]: https://i.sstatic.net/523xL.jpg
[6]: https://i.sstatic.net/5WZc4.jpg
[7]: https://i.sstatic.net/jLMJn.jpg
[8]: https://i.sstatic.net/IXimL.jpg
[9]: https://i.sstatic.net/zZ2u7.jpg