Skip to main content
Update to the latest URL
Source Link
Matt
  • 229
  • 3
  • 8

Citing http://blogs.msdn.com/b/vcblog/archive/2012/08/29/cxxcxpart00anintroduction.aspxhttps://devblogs.microsoft.com/cppblog/ccx-part-0-of-n-an-introduction/:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Citing http://blogs.msdn.com/b/vcblog/archive/2012/08/29/cxxcxpart00anintroduction.aspx:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Citing https://devblogs.microsoft.com/cppblog/ccx-part-0-of-n-an-introduction/:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Rollback to Revision 1
Source Link
Matt
  • 229
  • 3
  • 8

Citing Linkhttp://blogs.msdn.com/b/vcblog/archive/2012/08/29/cxxcxpart00anintroduction.aspx:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Citing Link:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Citing http://blogs.msdn.com/b/vcblog/archive/2012/08/29/cxxcxpart00anintroduction.aspx:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

broken link fixed, cf. https://meta.stackoverflow.com/a/406565/4751173
Source Link
Glorfindel
  • 3.2k
  • 6
  • 28
  • 34

Citing http://blogs.msdn.com/b/vcblog/archive/2012/08/29/cxxcxpart00anintroduction.aspxLink:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Citing http://blogs.msdn.com/b/vcblog/archive/2012/08/29/cxxcxpart00anintroduction.aspx:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Citing Link:

. . . while C++/CX is syntactically similar to C++/CLI and thus looks almost the same in many ways, it is semantically quite different. C++/CX code is native code, no CLR required. Programming in C++/CLI can be very challenging, as one must deftly juggle two very different object models at the same time: the C++ object model with its deterministic object lifetimes, and the garbage-collected CLI object model. C++/CX is much simpler to work with, because the Windows Runtime, which is based on COM, maps very well to the C++ programming language.

Windows Runtime defines a relatively simple, low-level Application Binary Interface (ABI), and mandates that components define their types using a common metadata format. C++/CX is not strictly required to write a native Windows Runtime component: it is quite possible to write Windows Runtime components using C++ without using the C++/CX language extensions, and Visual C++ 2012 includes a library, the Windows Runtime C++ Template Library (WRL), to help make this easier. Many of the Windows Runtime components that ship as part of Windows (in the Windows namespace) are written using WRL. There's no magic in C++/CX: it just makes writing Windows Runtime components in C++ much, much simpler and helps to cut the amount of repetitive and verbose code that you would have to write when using a library-based solution like WRL.

Source Link
Matt
  • 229
  • 3
  • 8
Loading