
Android 4.1 Compatibility Definition
Revision 3
Last updated: June 24, 2013

Copyright © 2012, Google Inc. All rights reserved.
compatibility@android.com

Table of Contents
1. Introduction
2. Resources
3. Software

3.1. Managed API Compatibility
3.2. Soft API Compatibility

3.2.1. Permissions
3.2.2. Build Parameters
3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents
3.2.3.2. Intent Overrides
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents

3.3. Native API Compatibility
3.3.1 Application Binary Interfaces

3.4. Web Compatibility
3.4.1. WebView Compatibility
3.4.2. Browser Compatibility

3.5. API Behavioral Compatibility
3.6. API Namespaces
3.7. Virtual Machine Compatibility
3.8. User Interface Compatibility

3.8.1. Widgets
3.8.2. Notifications
3.8.3. Search
3.8.4. Toasts
3.8.5. Themes
3.8.6. Live Wallpapers
3.8.7. Recent Application Display
3.8.8. Input Management Settings
3.8.9. Lock Screen Remote Control

3.9 Device Administration
3.10 Accessibility
3.11 Text-to-Speech

4. Application Packaging Compatibility
5. Multimedia Compatibility

5.1. Media Codecs
5.2. Video Encoding
5.3. Audio Recording
5.4. Audio Latency
5.5. Network Protocols

6. Developer Tool Compatibility
7. Hardware Compatibility

7.1. Display and Graphics
7.1.1. Screen Configuration
7.1.2. Display Metrics
7.1.3. Screen Orientation
7.1.4. 2D and 3D Graphics Accleration
7.1.5. Legacy Application Compatibility Mode
7.1.6. Screen Types
7.1.7. Screen Technology

7.2. Input Devices
7.2.1. Keyboard
7.2.2. Non-touch Navigation
7.2.3. Navigation keys
7.2.4. Touchscreen input
7.2.5. Fake touch input
7.2.6. Microphone

7.3. Sensors
7.3.1. Accelerometer

mailto:compatibility@android.com
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2.3.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2.3.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2.3.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.2.3.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.3.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.4.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.4.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.6
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.6
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.8
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.8.9
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.9
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.10
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.11
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-5.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-5.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-5.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-5.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-5.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-6
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.6
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.2.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.2.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.2.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.2.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.2.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.2.6
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.1

7.3.1. Accelerometer
7.3.2. Magnetometer
7.3.3. GPS
7.3.4. Gyroscope
7.3.5. Barometer
7.3.6. Thermometer
7.3.7. Photometer
7.3.8. Proximity Sensor

7.4. Data Connectivity
7.4.1. Telephony
7.4.2. IEEE 802.11 (WiFi)

7.4.2.1. WiFi Direct
7.4.3. Bluetooth
7.4.4. Near-Field Communications
7.4.5. Minimum Network Capability

7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. Camera API Behavior
7.5.4. Camera Orientation

7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage

7.7. USB
8. Performance Compatibility
9. Security Model Compatibility

9.1. Permissions
9.2. UID and Process Isolation
9.3. Filesystem Permissions
9.4. Alternate Execution Environments

10. Software Compatibility Testing
10.1. Compatibility Test Suite
10.2. CTS Verifier
10.3. Reference Applications

11. Updatable Software
12. Contact Us
Appendix A - Bluetooth Test Procedure

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.6
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.3.8
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.4.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.4.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.4.2.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.4.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.4.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.4.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.5.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.5.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.5.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.5.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.6
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.6.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.6.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-8
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-9
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-9.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-9.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-9.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-9.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-10
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-10.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-10.2
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-10.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-11
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-12
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#appendix-A

1. Introduction
This document enumerates the requirements that must be met in order for devices to
be compatible with Android 4.1.

The use of "must", "must not", "required", "shall", "shall not", "should", "should not",
"recommended", "may" and "optional" is per the IETF standard defined in RFC2119
[Resources, 1].

As used in this document, a "device implementer" or "implementer" is a person or
organization developing a hardware/software solution running Android 4.1. A "device
implementation" or "implementation" is the hardware/software solution so developed.

To be considered compatible with Android 4.1, device implementations MUST meet
the requirements presented in this Compatibility Definition, including any documents
incorporated via reference.

Where this definition or the software tests described in Section 10 is silent,
ambiguous, or incomplete, it is the responsibility of the device implementer to ensure
compatibility with existing implementations.

For this reason, the Android Open Source Project [Resources, 3] is both the reference
and preferred implementation of Android. Device implementers are strongly
encouraged to base their implementations to the greatest extent possible on the
"upstream" source code available from the Android Open Source Project. While some
components can hypothetically be replaced with alternate implementations this
practice is strongly discouraged, as passing the software tests will become
substantially more difficult. It is the implementer's responsibility to ensure full behavioral
compatibility with the standard Android implementation, including and beyond the
Compatibility Test Suite. Finally, note that certain component substitutions and
modifications are explicitly forbidden by this document.

2. Resources
1. IETF RFC2119 Requirement Levels: http://www.ietf.org/rfc/rfc2119.txt
2. Android Compatibility Program Overview:

http://source.android.com/compatibility/index.html
3. Android Open Source Project: http://source.android.com/
4. API definitions and documentation:

http://developer.android.com/reference/packages.html
5. Android Permissions reference:

http://developer.android.com/reference/android/Manifest.permission.html
6. android.os.Build reference:

http://developer.android.com/reference/android/os/Build.html
7. Android 4.1 allowed version strings:

http://source.android.com/compatibility/4.1/versions.html
8. Renderscript:

http://developer.android.com/guide/topics/graphics/renderscript.html
9. Hardware Acceleration:

http://developer.android.com/guide/topics/graphics/hardware-accel.html
10. android.webkit.WebView class:

http://developer.android.com/reference/android/webkit/WebView.html
11. HTML5: http://www.whatwg.org/specs/web-apps/current-work/multipage/
12. HTML5 offline capabilities: http://dev.w3.org/html5/spec/Overview.html#offline
13. HTML5 video tag: http://dev.w3.org/html5/spec/Overview.html#video
14. HTML5/W3C geolocation API: http://www.w3.org/TR/geolocation-API/
15. HTML5/W3C webdatabase API: http://www.w3.org/TR/webdatabase/
16. HTML5/W3C IndexedDB API: http://www.w3.org/TR/IndexedDB/
17. Dalvik Virtual Machine specification: available in the Android source code, at

dalvik/docs
18. AppWidgets:

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
19. Notifications:

http://developer.android.com/guide/topics/ui/notifiers/notifications.html
20. Application Resources: http://code.google.com/android/reference/available-

resources.html
21. Status Bar icon style guide:

http://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar.html
22. Search Manager:

http://developer.android.com/reference/android/app/SearchManager.html
23. Toasts: http://developer.android.com/reference/android/widget/Toast.html
24. Themes: http://developer.android.com/guide/topics/ui/themes.html

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources01
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-10
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources03
http://www.ietf.org/rfc/rfc2119.txt
https://backiee.wasmer.app/http_source_android_com/compatibility/index_html
https://backiee.wasmer.app/http_source_android_com/
http://developer.android.com/reference/packages_html
http://developer.android.com/reference/android/Manifest.permission_html
http://developer.android.com/reference/android/os/Build_html
https://backiee.wasmer.app/http_source_android_com/compatibility/4.1/versions_html
http://developer.android.com/guide/topics/graphics/renderscript_html
http://developer.android.com/guide/topics/graphics/hardware-accel_html
http://developer.android.com/reference/android/webkit/WebView_html
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://dev.w3.org/html5/spec/Overview_html#offline
http://dev.w3.org/html5/spec/Overview_html#video
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/IndexedDB/
http://developer.android.com/guide/practices/ui_guidelines/widget_design_html
http://developer.android.com/guide/topics/ui/notifiers/notifications_html
http://code.google.com/android/reference/available-resources_html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_status_bar_html
http://developer.android.com/reference/android/app/SearchManager_html
http://developer.android.com/reference/android/widget/Toast_html
http://developer.android.com/guide/topics/ui/themes_html

25. R.style class: http://developer.android.com/reference/android/R.style.html
26. Live Wallpapers: http://developer.android.com/resources/articles/live-

wallpapers.html
27. Android Device Administration:

http://developer.android.com/guide/topics/admin/device-admin.html
28. android.app.admin.DevicePolicyManager class:

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
29. Android Accessibility Service APIs:

http://developer.android.com/reference/android/accessibilityservice/package-
summary.html

30. Android Accessibility APIs:
http://developer.android.com/reference/android/view/accessibility/package-
summary.html

31. Eyes Free project: http://code.google.com/p/eyes-free
32. Text-To-Speech APIs:

http://developer.android.com/reference/android/speech/tts/package-
summary.html

33. Reference tool documentation (for adb, aapt, ddms):
http://developer.android.com/guide/developing/tools/index.html

34. Android apk file description:
http://developer.android.com/guide/topics/fundamentals.html

35. Manifest files: http://developer.android.com/guide/topics/manifest/manifest-
intro.html

36. Monkey testing tool:
http://developer.android.com/guide/developing/tools/monkey.html

37. Android android.content.pm.PackageManager class and Hardware Features
List:
http://developer.android.com/reference/android/content/pm/PackageManager.html

38. Supporting Multiple Screens:
http://developer.android.com/guide/practices/screens_support.html

39. android.util.DisplayMetrics:
http://developer.android.com/reference/android/util/DisplayMetrics.html

40. android.content.res.Configuration:
http://developer.android.com/reference/android/content/res/Configuration.html

41. android.hardware.SensorEvent:
http://developer.android.com/reference/android/hardware/SensorEvent.html

42. Bluetooth API:
http://developer.android.com/reference/android/bluetooth/package-summary.html

43. NDEF Push Protocol: http://source.android.com/compatibility/ndef-push-
protocol.pdf

44. MIFARE MF1S503X: http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
45. MIFARE MF1S703X: http://www.nxp.com/documents/data_sheet/MF1S703x.pdf
46. MIFARE MF0ICU1: http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
47. MIFARE MF0ICU2:

http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
48. MIFARE AN130511:

http://www.nxp.com/documents/application_note/AN130511.pdf
49. MIFARE AN130411:

http://www.nxp.com/documents/application_note/AN130411.pdf
50. Camera orientation API:

http://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)
51. android.hardware.Camera:

http://developer.android.com/reference/android/hardware/Camera.html
52. Android Open Accessories:

http://developer.android.com/guide/topics/usb/accessory.html
53. USB Host API: http://developer.android.com/guide/topics/usb/host.html
54. Android Security and Permissions reference:

http://developer.android.com/guide/topics/security/security.html
55. Apps for Android: http://code.google.com/p/apps-for-android
56. android.app.DownloadManager class:

http://developer.android.com/reference/android/app/DownloadManager.html
57. Android File Transfer: http://www.android.com/filetransfer
58. Android Media Formats: http://developer.android.com/guide/appendix/media-

formats.html
59. HTTP Live Streaming Draft Protocol: http://tools.ietf.org/html/draft-pantos-http-

live-streaming-03
60. NFC Connection Handover: http://www.nfc-

forum.org/specs/spec_list/#conn_handover
61. Bluetooth Secure Simple Pairing Using NFC: http://www.nfc-

forum.org/resources/AppDocs/NFCForum_AD_BTSSP_1_0.pdf
62. Wifi Multicast API:

http://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock.html

http://developer.android.com/reference/android/R.style_html
http://developer.android.com/resources/articles/live-wallpapers_html
http://developer.android.com/guide/topics/admin/device-admin_html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager_html
http://developer.android.com/reference/android/accessibilityservice/package-summary_html
http://developer.android.com/reference/android/view/accessibility/package-summary_html
http://http//code.google.com/p/eyes-free
http://developer.android.com/reference/android/speech/tts/package-summary_html
http://developer.android.com/guide/developing/tools/index_html
http://developer.android.com/guide/topics/fundamentals_html
http://developer.android.com/guide/topics/manifest/manifest-intro_html
http://developer.android.com/guide/developing/tools/monkey_html
http://developer.android.com/reference/android/content/pm/PackageManager_html
http://developer.android.com/guide/practices/screens_support_html
http://developer.android.com/reference/android/util/DisplayMetrics_html
http://developer.android.com/reference/android/content/res/Configuration_html
http://developer.android.com/reference/android/hardware/SensorEvent_html
http://developer.android.com/reference/android/bluetooth/package-summary_html
https://backiee.wasmer.app/http_source_android_com/compatibility/ndef-push-protocol.pdf
http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
http://www.nxp.com/documents/data_sheet/MF1S703x.pdf
http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
http://www.nxp.com/documents/application_note/AN130511.pdf
http://www.nxp.com/documents/application_note/AN130411.pdf
http://developer.android.com/reference/android/hardware/Camera_html#setDisplayOrientation(int)
http://developer.android.com/reference/android/hardware/Camera_html
http://developer.android.com/guide/topics/usb/accessory_html
http://developer.android.com/guide/topics/usb/host_html
http://developer.android.com/guide/topics/security/security_html
http://code.google.com/p/apps-for-android
http://developer.android.com/reference/android/app/DownloadManager_html
http://www.android.com/filetransfer
http://developer.android.com/guide/appendix/media-formats_html
http://tools.ietf.org/html/draft-pantos-http-live-streaming-03
http://www.nfc-forum.org/specs/spec_list/#conn_handover/
http://www.nfc-forum.org/resources/AppDocs/NFCForum_AD_BTSSP_1_0.pdf
http://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock_html

63. Action Assist:
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST

64. USB Charging Specification:
http://www.usb.org/developers/devclass_docs/USB_Battery_Charging_1.2.pdf

65. Android Beam: http://developer.android.com/guide/topics/nfc/nfc.html
66. Android USB Audio:

http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
67. Android NFC Sharing Settings:

http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFCSHARING_SETTINGS
68. Wifi Direct (Wifi P2P):

http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html
69. Media Remote Control Client:

http://developer.android.com/reference/android/media/RemoteControlClient.html
70. Motion Event API:

http://developer.android.com/reference/android/view/MotionEvent.html
71. Touch Input Configuration: http://source.android.com/tech/input/touch-

devices.html

Many of these resources are derived directly or indirectly from the Android 4.1 SDK,
and will be functionally identical to the information in that SDK's documentation. In any
cases where this Compatibility Definition or the Compatibility Test Suite disagrees with
the SDK documentation, the SDK documentation is considered authoritative. Any
technical details provided in the references included above are considered by
inclusion to be part of this Compatibility Definition.

3. Software
3.1. Managed API Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for Android
applications. The Android application programming interface (API) is the set of
Android platform interfaces exposed to applications running in the managed VM
environment. Device implementations MUST provide complete implementations,
including all documented behaviors, of any documented API exposed by the Android
4.1 SDK [Resources, 4].

Device implementations MUST NOT omit any managed APIs, alter API interfaces or
signatures, deviate from the documented behavior, or include no-ops, except where
specifically allowed by this Compatibility Definition.

This Compatibility Definition permits some types of hardware for which Android
includes APIs to be omitted by device implementations. In such cases, the APIs MUST
still be present and behave in a reasonable way. See Section 7 for specific
requirements for this scenario.

3.2. Soft API Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant
runtime-only "soft" API, in the form of such things such as Intents, permissions, and
similar aspects of Android applications that cannot be enforced at application compile
time.

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as
documented by the Permission reference page [Resources, 5]. Note that Section 10
lists additional requirements related to the Android security model.

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class
[Resources, 6] that are intended to describe the current device. To provide consistent,
meaningful values across device implementations, the table below includes additional
restrictions on the formats of these values to which device implementations MUST
conform.

Parameter Comments

android.os.Build.VERSION.RELEASE
The version of the currently-executing Android system, in human-readable format. This field MUST have one
of the string values defined in [Resources, 7].

android.os.Build.VERSION.SDK
The version of the currently-executing Android system, in a format accessible to third-party application code.
For Android 4.1, this field MUST have the integer value 16.

http://developer.android.com/reference/android/content/Intent_html#ACTION_ASSIST
http://www.usb.org/developers/devclass_docs/USB_Battery_Charging_1.2.pdf
http://developer.android.com/guide/topics/nfc/nfc_html
http://developer.android.com/reference/android/hardware/usb/UsbConstants_html#USB_CLASS_AUDIO
http://developer.android.com/reference/android/provider/Settings_html#ACTION_NFCSHARING_SETTINGS
http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager_html
http://developer.android.com/reference/android/media/RemoteControlClient_html
http://developer.android.com/reference/android/view/MotionEvent_html
https://backiee.wasmer.app/http_source_android_com/tech/input/touch-devices_html
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources04
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources05
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources06
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources07

android.os.Build.VERSION.SDK_INT
The version of the currently-executing Android system, in a format accessible to third-party application code.
For Android 4.1, this field MUST have the integer value 16.

android.os.Build.VERSION.INCREMENTAL

A value chosen by the device implementer designating the specific build of the currently-executing Android
system, in human-readable format. This value MUST NOT be re-used for different builds made available to
end users. A typical use of this field is to indicate which build number or source-control change identifier was
used to generate the build. There are no requirements on the specific format of this field, except that it MUST
NOT be null or the empty string ("").

android.os.Build.BOARD

A value chosen by the device implementer identifying the specific internal hardware used by the device, in
human-readable format. A possible use of this field is to indicate the specific revision of the board powering
the device. The value of this field MUST be encodable as 7-bit ASCII and match the regular expression
"^[a-zA-Z0-9.,_-]+$".

android.os.Build.BRAND

A value chosen by the device implementer identifying the name of the company, organization, individual, etc.
who produced the device, in human-readable format. A possible use of this field is to indicate the OEM
and/or carrier who sold the device. The value of this field MUST be encodable as 7-bit ASCII and match the
regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.CPU_ABI
The name of the instruction set (CPU type + ABI convention) of native code. See Section 3.3: Native API
Compatibility.

android.os.Build.CPU_ABI2
The name of the second instruction set (CPU type + ABI convention) of native code. See Section 3.3: Native
API Compatibility.

android.os.Build.DEVICE
A value chosen by the device implementer identifying the specific configuration or revision of the body
(sometimes called "industrial design") of the device. The value of this field MUST be encodable as 7-bit
ASCII and match the regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.FINGERPRINT

A string that uniquely identifies this build. It SHOULD be reasonably human-readable. It MUST follow this
template:
$(BRAND)/$(PRODUCT)/$(DEVICE):$(VERSION.RELEASE)/$(ID)/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)
For example:
acme/mydevice/generic:4.1/JRN53/3359:userdebug/test-keys
The fingerprint MUST NOT include whitespace characters. If other fields included in the template above have
whitespace characters, they MUST be replaced in the build fingerprint with another character, such as the
underscore ("_") character. The value of this field MUST be encodable as 7-bit ASCII.

android.os.Build.HARDWARE
The name of the hardware (from the kernel command line or /proc). It SHOULD be reasonably human-
readable. The value of this field MUST be encodable as 7-bit ASCII and match the regular expression "^[a-
zA-Z0-9.,_-]+$".

android.os.Build.HOST
A string that uniquely identifies the host the build was built on, in human readable format. There are no
requirements on the specific format of this field, except that it MUST NOT be null or the empty string ("").

android.os.Build.ID

An identifier chosen by the device implementer to refer to a specific release, in human readable format. This
field can be the same as android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value sufficiently
meaningful for end users to distinguish between software builds. The value of this field MUST be encodable
as 7-bit ASCII and match the regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.MANUFACTURER
The trade name of the Original Equipment Manufacturer (OEM) of the product. There are no requirements on
the specific format of this field, except that it MUST NOT be null or the empty string ("").

android.os.Build.MODEL
A value chosen by the device implementer containing the name of the device as known to the end user. This
SHOULD be the same name under which the device is marketed and sold to end users. There are no
requirements on the specific format of this field, except that it MUST NOT be null or the empty string ("").

android.os.Build.PRODUCT
A value chosen by the device implementer containing the development name or code name of the product
(SKU). MUST be human-readable, but is not necessarily intended for view by end users. The value of this
field MUST be encodable as 7-bit ASCII and match the regular expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.SERIAL
A hardware serial number, if available. The value of this field MUST be encodable as 7-bit ASCII and match
the regular expression "^([a-zA-Z0-9]{0,20})$".

android.os.Build.TAGS
A comma-separated list of tags chosen by the device implementer that further distinguish the build. For
example, "unsigned,debug". The value of this field MUST be encodable as 7-bit ASCII and match the regular
expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.TIME A value representing the timestamp of when the build occurred.

android.os.Build.TYPE

A value chosen by the device implementer specifying the runtime configuration of the build. This field
SHOULD have one of the values corresponding to the three typical Android runtime configurations: "user",
"userdebug", or "eng". The value of this field MUST be encodable as 7-bit ASCII and match the regular
expression "^[a-zA-Z0-9.,_-]+$".

android.os.Build.USER
A name or user ID of the user (or automated user) that generated the build. There are no requirements on
the specific format of this field, except that it MUST NOT be null or the empty string ("").

3.2.3. Intent Compatibility

Device implementations MUST honor Android's loose-coupling Intent system, as

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.3
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-3.3

described in the sections below. By "honored", it is meant that the device implementer
MUST provide an Android Activity or Service that specifies a matching Intent filter and
binds to and implements correct behavior for each specified Intent pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as contacts,
calendar, photo gallery, music player, and so on. Device implementers MAY replace
these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns provided
by the upstream project. For example, if a device contains an alternative music player,
it must still honor the Intent pattern issued by third-party applications to pick a song.

The following applications are considered core Android system applications:

Desk Clock
Browser
Calendar
Contacts
Gallery
GlobalSearch
Launcher
Music
Settings

The core Android system applications include various Activity, or Service components
that are considered "public". That is, the attribute "android:exported" may be absent, or
may have the value "true".

For every Activity or Service defined in one of the core Android system apps that is not
marked as non-public via an android:exported attribute with the value "false", device
implementations MUST include a compontent of the same type implementing the
same Intent filter patterns as the core Android system app.

In other words, a device implementation MAY replace core Android system apps;
however, if it does, the device implementation MUST support all Intent patterns defined
by each core Android system app being replaced.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementations MUST allow each Intent
pattern referenced in Section 3.2.3.2 to be overridden by third-party applications. The
upstream Android open source implementation allows this by default; device
implementers MUST NOT attach special privileges to system applications' use of
these Intent patterns, or prevent third-party applications from binding to and assuming
control of these patterns. This prohibition specifically includes but is not limited to
disabling the "Chooser" user interface which allows the user to select between multiple
applications which all handle the same Intent pattern.

However, device implementations MAY provide default activities for specific URI
patterns (eg. http://play.google.com) if the default activity provides a more specific filter
for the data URI. For example, an intent filter specifying the data URI
"http://www.android.com" is more specific than the browser filter for "http://". Device
implementations MUST provide a user interface for users to modify the default activity
for intents.

3.2.3.3. Intent Namespaces

Device implementations MUST NOT include any Android component that honors any
new Intent or Broadcast Intent patterns using an ACTION, CATEGORY, or other key
string in the android.* or com.android.* namespace. Device implementers MUST NOT
include any Android components that honor any new Intent or Broadcast Intent patterns
using an ACTION, CATEGORY, or other key string in a package space belonging to
another organization. Device implementers MUST NOT alter or extend any of the Intent
patterns used by the core apps listed in Section 3.2.3.1. Device implementations MAY
include Intent patterns using namespaces clearly and obviously associated with their
own organization.

This prohibition is analogous to that specified for Java language classes in Section
3.6.

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify them

of changes in the hardware or software environment. Android-compatible devices
MUST broadcast the public broadcast Intents in response to appropriate system
events. Broadcast Intents are described in the SDK documentation.

3.3. Native API Compatibility

3.3.1 Application Binary Interfaces

Managed code running in Dalvik can call into native code provided in the application
.apk file as an ELF .so file compiled for the appropriate device hardware architecture.
As native code is highly dependent on the underlying processor technology, Android
defines a number of Application Binary Interfaces (ABIs) in the Android NDK, in the file
docs/CPU-ARCH-ABIS.html. If a device implementation is compatible with one or more
defined ABIs, it SHOULD implement compatibility with the Android NDK, as below.

If a device implementation includes support for an Android ABI, it:

MUST include support for code running in the managed environment to call into
native code, using the standard Java Native Interface (JNI) semantics.
MUST be source-compatible (i.e. header compatible) and binary-compatible (for
the ABI) with each required library in the list below
MUST accurately report the native Application Binary Interface (ABI) supported
by the device, via the android.os.Build.CPU_ABI API
MUST report only those ABIs documented in the latest version of the Android
NDK, in the file docs/CPU-ARCH-ABIS.txt
SHOULD be built using the source code and header files available in the
upstream Android open source project

The following native code APIs MUST be available to apps that include native code:

libc (C library)
libm (math library)
Minimal support for C++
JNI interface
liblog (Android logging)
libz (Zlib compression)
libdl (dynamic linker)
libGLESv1_CM.so (OpenGL ES 1.0)
libGLESv2.so (OpenGL ES 2.0)
libEGL.so (native OpenGL surface management)
libjnigraphics.so
libOpenSLES.so (OpenSL ES 1.0.1 audio support)
libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
libandroid.so (native Android activity support)
Support for OpenGL, as described below

Note that future releases of the Android NDK may introduce support for additional
ABIs. If a device implementation is not compatible with an existing predefined ABI, it
MUST NOT report support for any ABI at all.

Native code compatibility is challenging. For this reason, it should be repeated that
device implementers are VERY strongly encouraged to use the upstream
implementations of the libraries listed above to help ensure compatibility.

3.4. Web Compatibility

3.4.1. WebView Compatibility

The Android Open Source implementation uses the WebKit rendering engine to
implement the android.webkit.WebView. Because it is not feasible to develop a
comprehensive test suite for a web rendering system, device implementers MUST use
the specific upstream build of WebKit in the WebView implementation. Specifically:

Device implementations' android.webkit.WebView implementations MUST be
based on the 534.30 WebKit build from the upstream Android Open Source tree
for Android 4.1. This build includes a specific set of functionality and security
fixes for the WebView. Device implementers MAY include customizations to the
WebKit implementation; however, any such customizations MUST NOT alter the
behavior of the WebView, including rendering behavior.
The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; U; Android $(VERSION); $(LOCALE); $(MODEL)
Build/$(BUILD)) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.1
Mobile Safari/534.30

The value of the $(VERSION) string MUST be the same as the value for

The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE
The value of the $(LOCALE) string SHOULD follow the ISO conventions for
country code and language, and SHOULD refer to the current configured
locale of the device
The value of the $(MODEL) string MUST be the same as the value for
android.os.Build.MODEL
The value of the $(BUILD) string MUST be the same as the value for
android.os.Build.ID
Device implementations MAY omit Mobile in the user agent string

The WebView component SHOULD include support for as much of HTML5
[Resources, 11] as possible. Minimally, device implementations MUST support each of
these APIs associated with HTML5 in the WebView:

application cache/offline operation [Resources, 12]
the <video> tag [Resources, 13]
geolocation [Resources, 14]

Additionally, device implementations MUST support the HTML5/W3C webstorage API
[Resources, 15], and SHOULD support the HTML5/W3C IndexedDB API [Resources,
16]. Note that as the web development standards bodies are transitioning to favor
IndexedDB over webstorage, IndexedDB is expected to become a required
component in a future version of Android.

HTML5 APIs, like all JavaScript APIs, MUST be disabled by default in a WebView,
unless the developer explicitly enables them via the usual Android APIs.

3.4.2. Browser Compatibility

Device implementations MUST include a standalone Browser application for general
user web browsing. The standalone Browser MAY be based on a browser technology
other than WebKit. However, even if an alternate Browser application is used, the
android.webkit.WebView component provided to third-party applications MUST be
based on WebKit, as described in Section 3.4.1.

Implementations MAY ship a custom user agent string in the standalone Browser
application.

The standalone Browser application (whether based on the upstream WebKit Browser
application or a third-party replacement) SHOULD include support for as much of
HTML5 [Resources, 11] as possible. Minimally, device implementations MUST support
each of these APIs associated with HTML5:

application cache/offline operation [Resources, 12]
the <video> tag [Resources, 13]
geolocation [Resources, 14]

Additionally, device implementations MUST support the HTML5/W3C webstorage API
[Resources, 15], and SHOULD support the HTML5/W3C IndexedDB API [Resources,
16]. Note that as the web development standards bodies are transitioning to favor
IndexedDB over webstorage, IndexedDB is expected to become a required
component in a future version of Android.

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be
consistent with the preferred implementation of the upstream Android open source
project [Resources, 3]. Some specific areas of compatibility are:

Devices MUST NOT change the behavior or semantics of a standard Intent
Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type
of system component (such as Service, Activity, ContentProvider, etc.)
Devices MUST NOT change the semantics of a standard permission

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests
significant portions of the platform for behavioral compatibility, but not all. It is the
responsibility of the implementer to ensure behavioral compatibility with the Android
Open Source Project. For this reason, device implementers SHOULD use the source
code available via the Android Open Source Project where possible, rather than re-
implement significant parts of the system.

3.6. API Namespaces

Android follows the package and class namespace conventions defined by the Java

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources11
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources12
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources13
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources14
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources15
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources16
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources11
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources12
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources13
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources14
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources15
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources16
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources03

programming language. To ensure compatibility with third-party applications, device
implementers MUST NOT make any prohibited modifications (see below) to these
package namespaces:

java.*
javax.*
sun.*
android.*
com.android.*

Prohibited modifications include:

Device implementations MUST NOT modify the publicly exposed APIs on the
Android platform by changing any method or class signatures, or by removing
classes or class fields.
Device implementers MAY modify the underlying implementation of the APIs, but
such modifications MUST NOT impact the stated behavior and Java-language
signature of any publicly exposed APIs.
Device implementers MUST NOT add any publicly exposed elements (such as
classes or interfaces, or fields or methods to existing classes or interfaces) to the
APIs above.

A "publicly exposed element" is any construct which is not decorated with the "@hide"
marker as used in the upstream Android source code. In other words, device
implementers MUST NOT expose new APIs or alter existing APIs in the namespaces
noted above. Device implementers MAY make internal-only modifications, but those
modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a
namespace owned by or referring to another organization. For instance, device
implementers MUST NOT add APIs to the com.google.* or similar namespace; only
Google may do so. Similarly, Google MUST NOT add APIs to other companies'
namespaces. Additionally, if a device implementation includes custom APIs outside
the standard Android namespace, those APIs MUST be packaged in an Android
shared library so that only apps that explicitly use them (via the <uses-library>
mechanism) are affected by the increased memory usage of such APIs.

If a device implementer proposes to improve one of the package namespaces above
(such as by adding useful new functionality to an existing API, or adding a new API), the
implementer SHOULD visit source.android.com and begin the process for contributing
changes and code, according to the information on that site.

Note that the restrictions above correspond to standard conventions for naming APIs in
the Java programming language; this section simply aims to reinforce those
conventions and make them binding through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) bytecode
specification and Dalvik Virtual Machine semantics [Resources, 17].

Device implementations MUST configure Dalvik to allocate memory in accordance
with the upstream Android platform, and as specified by the following table. (See
Section 7.1.1 for screen size and screen density definitions.)

Note that memory values specified below are considered minimum values, and device
implementations MAY allocate more memory per application.

Screen Size Screen Density Application Memory

small / normal / large ldpi / mdpi 16MB

small / normal / large tvdpi / hdpi 32MB

small / normal / large xhdpi 64MB

xlarge mdpi 32MB

xlarge tvdpi / hdpi 64MB

xlarge xhdpi 128MB

3.8. User Interface Compatibility

3.8.1. Widgets

Android defines a component type and corresponding API and lifecycle that allows

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources17
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7.1.1

applications to expose an "AppWidget" to the end user [Resources, 18]. The Android
Open Source reference release includes a Launcher application that includes user
interface affordances allowing the user to add, view, and remove AppWidgets from the
home screen.

Device implementations MAY substitute an alternative to the reference Launcher (i.e.
home screen). Alternative Launchers SHOULD include built-in support for AppWidgets,
and expose user interface affordances to add, configure, view, and remove
AppWidgets directly within the Launcher. Alternative Launchers MAY omit these user
interface elements; however, if they are omitted, the device implementation MUST
provide a separate application accessible from the Launcher that allows users to add,
configure, view, and remove AppWidgets.

Device implementations MUST be capable of rendering widgets that are 4 x 4 in the
standard grid size. (See the App Widget Design Guidelines in the Android SDK
documentation [Resources, 18] for details.

3.8.2. Notifications

Android includes APIs that allow developers to notify users of notable events
[Resources, 19], using hardware and software features of the device.

Some APIs allow applications to perform notifications or attract attention using
hardware, specifically sound, vibration, and light. Device implementations MUST
support notifications that use hardware features, as described in the SDK
documentation, and to the extent possible with the device implementation hardware.
For instance, if a device implementation includes a vibrator, it MUST correctly
implement the vibration APIs. If a device implementation lacks hardware, the
corresponding APIs MUST be implemented as no-ops. Note that this behavior is
further detailed in Section 7.

Additionally, the implementation MUST correctly render all resources (icons, sound
files, etc.) provided for in the APIs [Resources, 20], or in the Status/System Bar icon
style guide [Resources, 21]. Device implementers MAY provide an alternative user
experience for notifications than that provided by the reference Android Open Source
implementation; however, such alternative notification systems MUST support existing
notification resources, as above.

Android 4.1 includes support for rich notifications, such as interactive Views for
ongoing notifications. Device implementations MUST properly display and execute rich
notifications, as documented in the Android APIs.

3.8.3. Search

Android includes APIs [Resources, 22] that allow developers to incorporate search into
their applications, and expose their application's data into the global system search.
Generally speaking, this functionality consists of a single, system-wide user interface
that allows users to enter queries, displays suggestions as users type, and displays
results. The Android APIs allow developers to reuse this interface to provide search
within their own apps, and allow developers to supply results to the common global
search user interface.

Device implementations MUST include a single, shared, system-wide search user
interface capable of real-time suggestions in response to user input. Device
implementations MUST implement the APIs that allow developers to reuse this user
interface to provide search within their own applications. Device implementations
MUST implement the APIs that allow third-party applications to add suggestions to the
search box when it is run in global search mode. If no third-party applications are
installed that make use of this functionality, the default behavior SHOULD be to display
web search engine results and suggestions.

3.8.4. Toasts

Applications can use the "Toast" API (defined in [Resources, 23]) to display short non-
modal strings to the end user, that disappear after a brief period of time. Device
implementations MUST display Toasts from applications to end users in some high-
visibility manner.

3.8.5. Themes

Android provides "themes" as a mechanism for applications to apply styles across an
entire Activity or application. Android 3.0 introduced a new "Holo" or "holographic"
theme as a set of defined styles for application developers to use if they want to match
the Holo theme look and feel as defined by the Android SDK [Resources, 24]. Device
implementations MUST NOT alter any of the Holo theme attributes exposed to

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources18
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources18
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources19
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources20
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources21
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources22
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources23
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources24

applications [Resources, 25].

Android 4.0 introduced a new "Device Default" theme as a set of defined styles for
application developers to use if they want to match the look and feel of the device
theme as defined by the device implementer. Device implementations MAY modify the
DeviceDefault theme attributes exposed to applications [Resources, 25].

3.8.6. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows
applications to expose one or more "Live Wallpapers" to the end user [Resources, 26].
Live Wallpapers are animations, patterns, or similar images with limited input
capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live
wallpapers, with no limitations on functionality, at a reasonable framerate with no
adverse affects on other applications. If limitations in the hardware cause wallpapers
and/or applications to crash, malfunction, consume excessive CPU or battery power, or
run at unacceptably low frame rates, the hardware is considered incapable of running
live wallpaper. As an example, some live wallpapers may use an Open GL 1.0 or 2.0
context to render their content. Live wallpaper will not run reliably on hardware that
does not support multiple OpenGL contexts because the live wallpaper use of an
OpenGL context may conflict with other applications that also use an OpenGL context.

Device implementations capable of running live wallpapers reliably as described
above SHOULD implement live wallpapers. Device implementations determined to not
run live wallpapers reliably as described above MUST NOT implement live wallpapers.

3.8.7. Recent Application Display

The upstream Android 4.1 source code includes a user interface for displaying recent
applications using a thumbnail image of the application's graphical state at the
moment the user last left the application. Device implementations MAY alter or
eliminate this user interface; however, a future version of Android is planned to make
more extensive use of this functionality. Device implementations are strongly
encouraged to use the upstream Android 4.1 user interface (or a similar thumbnail-
based interface) for recent applications, or else they may not be compatible with a
future version of Android.

3.8.8. Input Management Settings

Android 4.1 includes support for Input Management Engines. The Android 4.1 APIs
allow custom app IMEs to specify user-tunable settings. Device implementations
MUST include a way for the user to access IME settings at all times when an IME that
provides such user settings is displayed.

3.8.9. Lock Screen Remote Control

Android 4.0 introduced support for Remote Control API that lets media applications
integrate with playback controls that are displayed in a remote view like the device
lock screen [Resources, 69]. Device implementations SHOULD include support for
embedding remote controls in the device lock screen.

3.9 Device Administration

Android 4.1 includes features that allow security-aware applications to perform device
administration functions at the system level, such as enforcing password policies or
performing remote wipe, through the Android Device Administration API [Resources,
27]. Device implementations MUST provide an implementation of the
DevicePolicyManager class [Resources, 28], and SHOULD support the full range of
device administration policies defined in the Android SDK documentation [Resources,
27].

Note: while some of the requirements outlined above are stated as "SHOULD" for
Android 4.1, the Compatibility Definition for a future version is planned to change these
to "MUST". That is, these requirements are optional in Android 4.1 but will be
required by a future version. Existing and new devices that run Android 4.1 are very
strongly encouraged to meet these requirements in Android 4.1, or they will not
be able to attain Android compatibility when upgraded to the future version.

3.10 Accessibility

Android 4.1 provides an accessibility layer that helps users with disabilities to navigate
their devices more easily. In addition, Android 4.1 provides platform APIs that enable

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources25
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources25
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources26
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources69
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources27
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources28
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources27

accessibility service implementations to receive callbacks for user and system events
and generate alternate feedback mechanisms, such as text-to-speech, haptic
feedback, and trackball/d-pad navigation [Resources, 29]. Device implementations
MUST provide an implementation of the Android accessibility framework consistent
with the default Android implementation. Specifically, device implementations MUST
meet the following requirements.

Device implementations MUST support third party accessibility service
implementations through the android.accessibilityservice APIs [Resources,
30].
Device implementations MUST generate AccessibilityEvents and deliver
these events to all registered AccessibilityService implementations in a
manner consistent with the default Android implementation.
Device implementations MUST provide a user-accessible mechanism to enable
and disable accessibility services, and MUST display this interface in response
to the android.provider.Settings.ACTION_ACCESSIBILITY_SETTINGS intent.

Additionally, device implementations SHOULD provide an implementation of an
accessibility service on the device, and SHOULD provide a mechanism for users to
enable the accessibility service during device setup. An open source implementation
of an accessibility service is available from the Eyes Free project [Resources, 31].

3.11 Text-to-Speech

Android 4.1 includes APIs that allow applications to make use of text-to-speech (TTS)
services, and allows service providers to provide implementations of TTS services
[Resources, 32]. Device implementations MUST meet these requirements related to
the Android TTS framework:

Device implementations MUST support the Android TTS framework APIs and
SHOULD include a TTS engine supporting the languages available on the
device. Note that the upstream Android open source software includes a full-
featured TTS engine implementation.
Device implementations MUST support installation of third-party TTS engines.
Device implementations MUST provide a user-accessible interface that allows
users to select a TTS engine for use at the system level.

4. Application Packaging Compatibility
Device implementations MUST install and run Android ".apk" files as generated by the
"aapt" tool included in the official Android SDK [Resources, 33].

Devices implementations MUST NOT extend either the .apk [Resources, 34], Android
Manifest [Resources, 35], Dalvik bytecode [Resources, 17], or renderscript bytecode
formats in such a way that would prevent those files from installing and running correctly
on other compatible devices. Device implementers SHOULD use the reference
upstream implementation of Dalvik, and the reference implementation's package
management system.

5. Multimedia Compatibility
Device implementations MUST include at least one form of audio output, such as
speakers, headphone jack, external speaker connection, etc.

5.1. Media Codecs

Device implementations MUST support the core media formats specified in the
Android SDK documentation [Resources, 58] except where explicitly permitted in this
document. Specifically, device implementations MUST support the media formats,
encoders, decoders, file types and container formats defined in the tables below. All of
these codecs are provided as software implementations in the preferred Android
implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any
representation that these codecs are unencumbered by third-party patents.
Those intending to use this source code in hardware or software products are
advised that implementations of this code, including in open source software
or shareware, may require patent licenses from the relevant patent holders.

Note that these tables do not list specific bitrate requirements for most video codecs
because current device hardware does not necessarily support bitrates that map
exactly to the required bitrates specified by the relevant standards. Instead, device
implementations SHOULD support the highest bitrate practical on the hardware, up to

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources29
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources30
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources31
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources32
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources33
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources34
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources35
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources17
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources58

the limits defined by the specifications.

Type
Format /
Codec

Encoder Decoder Details
File Type(s) /

Container
Formats

Audio

MPEG-4
AAC Profile
(AAC LC)

REQUIRED
Required for device implementations

that include microphone hardware

and define

android.hardware.microphone.

REQUIRED

Support for
mono/stereo/5.0/5.1*
content with
standard sampling
rates from 8 to 48
kHz.

3GPP
(.3gp)
MPEG-4
(.mp4,
.m4a)
ADTS raw
AAC (.aac,
decode in
Android
3.1+,
encode in
Android
4.0+, ADIF
not
supported)
MPEG-TS
(.ts, not
seekable,
Android
3.0+)

MPEG-4
HE AAC
Profile
(AAC+)

 REQUIRED

Support for
mono/stereo/5.0/5.1*
content with
standard sampling
rates from 16 to 48
kHz.

MPEG-4
HE AAC v2
Profile
(enhanced
AAC+)

REQUIRED for device
implementations that include
microphone hardware and
define
android.hardware.microphone

Support for
mono/stereo/5.0/5.1*
content with
standard sampling
rates from 16 to 48
kHz.

MPEG-4
Audio
Object Type
ER AAC
ELD
(Enhanced
Low Delay
AAC)

REQUIRED for device
implementations that include
microphone hardware and
define
android.hardware.microphone

REQUIRED

Support for
mono/stereo content
with standard
sampling rates from
16 to 48 kHz.

AMR-NB

REQUIRED
Required for device implementations

that include microphone hardware

and define

android.hardware.microphone.

REQUIRED
4.75 to 12.2 kbps
sampled @ 8kHz

3GPP (.3gp)

AMR-WB

REQUIRED
Required for device implementations

that include microphone hardware

and define

android.hardware.microphone.

REQUIRED
9 rates from 6.60
kbit/s to 23.85 kbit/s
sampled @ 16kHz

3GPP (.3gp)

FLAC
REQUIRED
(Android 3.1+)

Mono/Stereo (no
multichannel).
Sample rates up to
48 kHz (but up to
44.1 kHz is
recommended on
devices with 44.1
kHz output, as the 48
to 44.1 kHz
downsampler does
not include a low-
pass filter). 16-bit
recommended; no
dither applied for 24-
bit.

FLAC (.flac) only

MP3 REQUIRED

Mono/Stereo 8-
320Kbps constant
(CBR) or variable
bit-rate (VBR)

MP3 (.mp3)

MIDI REQUIRED

MIDI Type 0 and 1.
DLS Version 1 and
2. XMF and Mobile
XMF. Support for
ringtone formats
RTTTL/RTX, OTA,
and iMelody

Type 0 and
1 (.mid,
.xmf, .mxmf)
RTTTL/RTX
(.rtttl, .rtx)
OTA (.ota)
iMelody
(.imy)

Vorbis REQUIRED
Ogg (.ogg)
Matroska
(.mkv)

PCM/WAVE REQUIRED REQUIRED

8-bit and 16-bit
linear PCM** (rates
up to limit of
hardware).Devices
MUST support
sampling rates for
raw PCM recording
at 8000,16000 and
44100 Hz
frequencies

WAVE (.wav)

Image

JPEG REQUIRED REQUIRED Base+progressive JPEG (.jpg)

GIF REQUIRED GIF (.gif)

PNG REQUIRED REQUIRED PNG (.png)

BMP REQUIRED BMP (.bmp)

WEBP REQUIRED REQUIRED WebP (.webp)

Video

H.263

REQUIRED
Required for device implementations

that include camera hardware and

define android.hardware.camera

or

android.hardware.camera.front.

REQUIRED

3GPP
(.3gp)
MPEG-4
(.mp4)

H.264 AVC

REQUIRED
Required for device implementations

that include camera hardware and

define android.hardware.camera

or

android.hardware.camera.front.

REQUIRED
Baseline Profile
(BP)

3GPP
(.3gp)
MPEG-4
(.mp4)
MPEG-TS
(.ts, AAC
audio only,
not
seekable,
Android
3.0+)

MPEG-4
SP

 REQUIRED 3GPP (.3gp)

VP8
REQUIRED

(Android

2.3.3+)

WebM (.webm)
and Matroska
(.mkv, Android
4.0+)

*Note: Only downmix of 5.0/5.1 content is required; recording or rendering more than 2
channels is optional. **Note: 16-bit linear PCM capture is mandatory. 8-bit linear PCM
capture is not mandatory.

5.2 Video Encoding

Android device implementations that include a rear-facing camera and declare
android.hardware.camera SHOULD support the following video encoding profiles.

 SD (Low quality) SD (High quality)
HD (When supported by

hardware)

Video codec
H.264 Baseline
Profile

H.264 Baseline
Profile

H.264 Baseline Profile

Video
resolution

176 x 144 px 480 x 360 px 1280 x 720 px

Video frame
rate

12 fps 30 fps 30 fps

Video bitrate 56 Kbps
500 Kbps or
higher

2 Mbps or higher

Audio codec AAC-LC AAC-LC AAC-LC

http://www.webmproject.org/

Audio
channels

1 (mono) 2 (stereo) 2 (stereo)

Audio bitrate 24 Kbps 128 Kbps 192 Kbps

5.3. Audio Recording

When an application has used the android.media.AudioRecord API to start recording
an audio stream, device implementations that include microphone hardware and
declare android.hardware.microphone MUST sample and record audio with each of
these behaviors:

The device SHOULD exhibit approximately flat amplitude versus frequency
characteristics; specifically, ±3 dB, from 100 Hz to 4000 Hz
Audio input sensitivity SHOULD be set such that a 90 dB sound power level
(SPL) source at 1000 Hz yields RMS of 2500 for 16-bit samples.
PCM amplitude levels SHOULD linearly track input SPL changes over at least a
30 dB range from -18 dB to +12 dB re 90 dB SPL at the microphone.
Total harmonic distortion SHOULD be less than 1% for 1Khz at 90 dB SPL input
level.

In addition to the above recording specifications, when an application has started
recording an audio stream using the
android.media.MediaRecorder.AudioSource.VOICE_RECOGNITION audio source:

Noise reduction processing, if present, MUST be disabled.
Automatic gain control, if present, MUST be disabled.

Note: while some of the requirements outlined above are stated as "SHOULD" for
Android 4.1, the Compatibility Definition for a future version is planned to change these
to "MUST". That is, these requirements are optional in Android 4.1 but will be
required by a future version. Existing and new devices that run Android 4.1 are very
strongly encouraged to meet these requirements in Android 4.1, or they will not
be able to attain Android compatibility when upgraded to the future version.

5.4. Audio Latency

Audio latency is broadly defined as the interval between when an application requests
an audio playback or record operation, and when the device implementation actually
begins the operation. Many classes of applications rely on short latencies, to achieve
real-time effects such sound effects or VOIP communication. Device implementations
that include microphone hardware and declare android.hardware.microphone
SHOULD meet all audio latency requirements outlined in this section. See Section 7
for details on the conditions under which microphone hardware may be omitted by
device implementations.

For the purposes of this section:

"cold output latency" is defined to be the interval between when an application
requests audio playback and when sound begins playing, when the audio system
has been idle and powered down prior to the request
"warm output latency" is defined to be the interval between when an application
requests audio playback and when sound begins playing, when the audio system
has been recently used but is currently idle (that is, silent)
"continuous output latency" is defined to be the interval between when an
application issues a sample to be played and when the speaker physically plays
the corresponding sound, while the device is currently playing back audio
"cold input latency" is defined to be the interval between when an application
requests audio recording and when the first sample is delivered to the
application via its callback, when the audio system and microphone has been
idle and powered down prior to the request
"continuous input latency" is defined to be when an ambient sound occurs and
when the sample corresponding to that sound is delivered to a recording
application via its callback, while the device is in recording mode

Using the above definitions, device implementations SHOULD exhibit each of these
properties:

cold output latency of 100 milliseconds or less
warm output latency of 10 milliseconds or less
continuous output latency of 45 milliseconds or less
cold input latency of 100 milliseconds or less
continuous input latency of 50 milliseconds or less

Note: while the requirements outlined above are stated as "SHOULD" for Android 4.1,

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#section-7

the Compatibility Definition for a future version is planned to change these to "MUST".
That is, these requirements are optional in Android 4.1 but will be required by a future
version. Existing and new devices that run Android 4.1 are very strongly
encouraged to meet these requirements in Android 4.1, or they will not be able to
attain Android compatibility when upgraded to the future version.

If a device implementation meets the requirements of this section, it MAY report
support for low-latency audio, by reporting the feature "android.hardware.audio.low-
latency" via the android.content.pm.PackageManager class. [Resources, 37]
Conversely, if the device implementation does not meet these requirements it MUST
NOT report support for low-latency audio.

5.5. Network Protocols

Devices MUST support the media network protocols for audio and video playback as
specified in the Android SDK documentation [Resources, 58]. Specifically, devices
MUST support the following media network protocols:

RTSP (RTP, SDP)
HTTP(S) progressive streaming
HTTP(S) Live Streaming draft protocol, Version 3 [Resources, 59]

6. Developer Tool Compatibility
Device implementations MUST support the Android Developer Tools provided in the
Android SDK. Specifically, Android-compatible devices MUST be compatible with:

Android Debug Bridge (known as adb) [Resources, 33]
Device implementations MUST support all adb functions as documented in the
Android SDK. The device-side adb daemon MUST be inactive by default, and
there MUST be a user-accessible mechanism to turn on the Android Debug
Bridge.
Dalvik Debug Monitor Service (known as ddms) [Resources, 33]
Device implementations MUST support all ddms features as documented in the
Android SDK. As ddms uses adb, support for ddms SHOULD be inactive by
default, but MUST be supported whenever the user has activated the Android
Debug Bridge, as above.
Monkey [Resources, 36]
Device implementations MUST include the Monkey framework, and make it
available for applications to use.

Most Linux-based systems and Apple Macintosh systems recognize Android devices
using the standard Android SDK tools, without additional support; however Microsoft
Windows systems typically require a driver for new Android devices. (For instance,
new vendor IDs and sometimes new device IDs require custom USB drivers for
Windows systems.) If a device implementation is unrecognized by the adb tool as
provided in the standard Android SDK, device implementers MUST provide Windows
drivers allowing developers to connect to the device using the adb protocol. These
drivers MUST be provided for Windows XP, Windows Vista, and Windows 7, in both
32-bit and 64-bit versions.

7. Hardware Compatibility
If a device includes a particular hardware component that has a corresponding API for
third-party developers, the device implementation MUST implement that API as
described in the Android SDK documentation. If an API in the SDK interacts with a
hardware component that is stated to be optional and the device implementation does
not possess that component:

complete class definitions (as documented by the SDK) for the component's
APIs MUST still be present
the API's behaviors MUST be implemented as no-ops in some reasonable
fashion
API methods MUST return null values where permitted by the SDK
documentation
API methods MUST return no-op implementations of classes where null values
are not permitted by the SDK documentation
API methods MUST NOT throw exceptions not documented by the SDK
documentation

A typical example of a scenario where these requirements apply is the telephony API:
even on non-phone devices, these APIs must be implemented as reasonable no-ops.

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources37
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources58
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources59
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources33
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources33
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources36

Device implementations MUST accurately report accurate hardware configuration
information via the getSystemAvailableFeatures() and hasSystemFeature(String)
methods on the android.content.pm.PackageManager class. [Resources, 37]

7.1. Display and Graphics

Android 4.1 includes facilities that automatically adjust application assets and UI
layouts appropriately for the device, to ensure that third-party applications run well on a
variety of hardware configurations [Resources, 38]. Devices MUST properly implement
these APIs and behaviors, as detailed in this section.

The units referenced by the requirements in this section are defined as follows:

"Physical diagonal size" is the distance in inches between two opposing corners
of the illuminated portion of the display.
"dpi" (meaning "dots per inch") is the number of pixels encompassed by a linear
horizontal or vertical span of 1". Where dpi values are listed, both horizontal and
vertical dpi must fall within the range.
"Aspect ratio" is the ratio of the longer dimension of the screen to the shorter
dimension. For example, a display of 480x854 pixels would be 854 / 480 =
1.779, or roughly "16:9".
A "density-independent pixel" or ("dp") is the virtual pixel unit normalized to a 160
dpi screen, calculated as: pixels = dps * (density / 160).

7.1.1. Screen Configuration

Screen Size

The Android UI framework supports a variety of different screen sizes, and allows
applications to query the device screen size (aka "screen layout") via
android.content.res.Configuration.screenLayout with the
SCREENLAYOUT_SIZE_MASK. Device implementations MUST report the correct screen
size as defined in the Android SDK documentation [Resources, 38] and determined by
the upstream Android platform. Specifically, device implementations must report the
correct screen size according to the following logical density-independent pixel (dp)
screen dimensions.

Devices MUST have screen sizes of at least 426 dp x 320 dp ('small')
Devices that report screen size 'normal' MUST have screen sizes of at least 480
dp x 320 dp
Devices that report screen size 'large' MUST have screen sizes of at least 640
dp x 480 dp
Devices that report screen size 'xlarge' MUST have screen sizes of at least 960
dp x 720 dp

In addition, devices MUST have screen sizes of at least 2.5 inches in physical diagonal
size.

Devices MUST NOT change their reported screen size at any time.

Applications optionally indicate which screen sizes they support via the <supports-
screens> attribute in the AndroidManifest.xml file. Device implementations MUST
correctly honor applications' stated support for small, normal, large, and xlarge
screens, as described in the Android SDK documentation.

Screen Aspect Ratio

The aspect ratio MUST be between 1.3333 (4:3) and 1.85 (16:9).

Screen Density

The Android UI framework defines a set of standard logical densities to help
application developers target application resources. Device implementations MUST
report one of the following logical Android framework densities through the
android.util.DisplayMetrics APIs, and MUST execute applications at this standard
density.

120 dpi, known as 'ldpi'
160 dpi, known as 'mdpi'
213 dpi, known as 'tvdpi'
240 dpi, known as 'hdpi'
320 dpi, known as 'xhdpi'
480 dpi, known as 'xxhdpi'

Device implementations SHOULD define the standard Android framework density that
is numerically closest to the physical density of the screen, unless that logical density

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources37
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources38
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources38

is numerically closest to the physical density of the screen, unless that logical density
pushes the reported screen size below the minimum supported. If the standard Android
framework density that is numerically closest to the physical density results in a screen
size that is smaller than the smallest supported compatible screen size (320 dp width),
device implementations SHOULD report the next lowest standard Android framework
density.

7.1.2. Display Metrics

Device implementations MUST report correct values for all display metrics defined in
android.util.DisplayMetrics [Resources, 39].

7.1.3. Screen Orientation

Devices MUST support dynamic orientation by applications to either portrait or
landscape screen orientation. That is, the device must respect the application's
request for a specific screen orientation. Device implementations MAY select either
portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever
queried via the android.content.res.Configuration.orientation,
android.view.Display.getOrientation(), or other APIs.

Devices MUST NOT change the reported screen size or density when changing
orientation.

Devices MUST report which screen orientations they support (
android.hardware.screen.portrait and/or android.hardware.screen.landscape)
and MUST report at least one supported orientation. For example, a device with a
fixed-orientation landscape screen, such as a television or laptop, MUST only report
android.hardware.screen.landscape.

7.1.4. 2D and 3D Graphics Acceleration

Device implementations MUST support both OpenGL ES 1.0 and 2.0, as embodied
and detailed in the Android SDK documentations. Device implementations MUST also
support Android Renderscript, as detailed in the Android SDK documentation
[Resources, 8].

Device implementations MUST also correctly identify themselves as supporting
OpenGL ES 1.0 and 2.0. That is:

The managed APIs (such as via the GLES10.getString() method) MUST report
support for OpenGL ES 1.0 and 2.0
The native C/C++ OpenGL APIs (that is, those available to apps via
libGLES_v1CM.so, libGLES_v2.so, or libEGL.so) MUST report support for
OpenGL ES 1.0 and 2.0.

Device implementations MAY implement any desired OpenGL ES extensions.
However, device implementations MUST report via the OpenGL ES managed and
native APIs all extension strings that they do support, and conversely MUST NOT report
extension strings that they do not support.

Note that Android 4.1 includes support for applications to optionally specify that they
require specific OpenGL texture compression formats. These formats are typically
vendor-specific. Device implementations are not required by Android 4.1 to implement
any specific texture compression format. However, they SHOULD accurately report any
texture compression formats that they do support, via the getString() method in the
OpenGL API.

Android 4.1 includes a mechanism for applications to declare that they wanted to
enable hardware acceleration for 2D graphics at the Application, Activity, Window or
View level through the use of a manifest tag android:hardwareAccelerated or direct
API calls [Resources, 9].

In Android 4.1, device implementations MUST enable hardware acceleration by
default, and MUST disable hardware acceleration if the developer so requests by
setting android:hardwareAccelerated="false" or disabling hardware acceleration
directly through the Android View APIs.

In addition, device implementations MUST exhibit behavior consistent with the Android
SDK documentation on hardware acceleration [Resources, 9].

Android 4.1 includes a TextureView object that lets developers directly integrate
hardware-accelerated OpenGL ES textures as rendering targets in a UI hierarchy.
Device implementations MUST support the TextureView API, and MUST exhibit

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources39
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources08
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources09
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources09

consistent behavior with the upstream Android implementation.

7.1.5. Legacy Application Compatibility Mode

Android 4.1 specifies a "compatibility mode" in which the framework operates in an
'normal' screen size equivalent (320dp width) mode for the benefit of legacy
applications not developed for old versions of Android that pre-date screen-size
independence. Device implementations MUST include support for legacy application
compatibility mode as implemented by the upstream Android open source code. That
is, device implementations MUST NOT alter the triggers or thresholds at which
compatibility mode is activated, and MUST NOT alter the behavior of the compatibility
mode itself.

7.1.6. Screen Types

Device implementation screens are classified as one of two types:

Fixed-pixel display implementations: the screen is a single panel that supports
only a single pixel width and height. Typically the screen is physically integrated
with the device. Examples include mobile phones, tablets, and so on.
Variable-pixel display implementations: the device implementation either has no
embedded screen and includes a video output port such as VGA, HDMI or a
wireless port for display, or has an embedded screen that can change pixel
dimensions. Examples include televisions, set-top boxes, and so on.

Fixed-Pixel Device Implementations

Fixed-pixel device implementations MAY use screens of any pixel dimensions,
provided that they meet the requirements defined this Compatibility Definition.

Fixed-pixel implementations MAY include a video output port for use with an external
display. However, if that display is ever used for running apps, the device MUST meet
the following requirements:

The device MUST report the same screen configuration and display metrics, as
detailed in Sections 7.1.1 and 7.1.2, as the fixed-pixel display.
The device MUST report the same logical density as the fixed-pixel display.
The device MUST report screen dimensions that are the same as, or very close
to, the fixed-pixel display.

For example, a tablet that is 7" diagonal size with a 1024x600 pixel resolution is
considered a fixed-pixel large mdpi display implementation. If it contains a video
output port that displays at 720p or 1080p, the device implementation MUST scale the
output so that applications are only executed in a large mdpi window, regardless of
whether the fixed-pixel display or video output port is in use.

Variable-Pixel Device Implementations

Variable-pixel device implementations MUST support one or both of 1280x720, or
1920x1080 (that is, 720p or 1080p). Device implementations with variable-pixel
displays MUST NOT support any other screen configuration or mode. Device
implementations with variable-pixel screens MAY change screen configuration or
mode at runtime or boot-time. For example, a user of a set-top box may replace a
720p display with a 1080p display, and the device implementation may adjust
accordingly.

Additionally, variable-pixel device implementations MUST report the following
configuration buckets for these pixel dimensions:

1280x720 (also known as 720p): 'large' screen size, 'tvdpi' (213 dpi) density
1920x1080 (also known as 1080p): 'large' screen size, 'xhdpi' (320 dpi) density

For clarity, device implementations with variable pixel dimensions are restricted to
720p or 1080p in Android 4.1, and MUST be configured to report screen size and
density buckets as noted above.

7.1.7. Screen Technology

The Android platform includes APIs that allow applications to render rich graphics to
the display. Devices MUST support all of these APIs as defined by the Android SDK
unless specifically allowed in this document. Specifically:

Devices MUST support displays capable of rendering 16-bit color graphics and
SHOULD support displays capable of 24-bit color graphics.
Devices MUST support displays capable of rendering animations.
The display technology used MUST have a pixel aspect ratio (PAR) between 0.9

and 1.1. That is, the pixel aspect ratio MUST be near square (1.0) with a 10%
tolerance.

7.2. Input Devices

7.2.1. Keyboard

Device implementations:

MUST include support for the Input Management Framework (which allows third
party developers to create Input Management Engines - i.e. soft keyboard) as
detailed at http://developer.android.com
MUST provide at least one soft keyboard implementation (regardless of whether
a hard keyboard is present)
MAY include additional soft keyboard implementations
MAY include a hardware keyboard
MUST NOT include a hardware keyboard that does not match one of the formats
specified in android.content.res.Configuration.keyboard [Resources, 40]
(that is, QWERTY, or 12-key)

7.2.2. Non-touch Navigation

Device implementations:

MAY omit a non-touch navigation option (that is, may omit a trackball, d-pad, or
wheel)
MUST report the correct value for
android.content.res.Configuration.navigation [Resources, 40]
MUST provide a reasonable alternative user interface mechanism for the
selection and editing of text, compatible with Input Management Engines. The
upstream Android open source software includes a selection mechanism
suitable for use with devices that lack non-touch navigation inputs.

7.2.3. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation
paradigm. Device implementations MUST make these functions available to the user
at all times when running applications. These functions MAY be implemented via
dedicated physical buttons (such as mechanical or capacitive touch buttons), or MAY
be implemented using dedicated software keys, gestures, touch panel, etc. Android
4.1 supports both implementations.

Android 4.1 introduces support for assist action [Resources, 63]. Device
implementations MUST make the assist action available to the user at all times when
running applications. This function MAY be implemented via hardware or software
keys.

Device implementations MAY use a distinct portion of the screen to display the
navigation keys, but if so, MUST meet these requirements:

Device implementation navigation keys MUST use a distinct portion of the
screen, not available to applications, and MUST NOT obscure or otherwise
interfere with the portion of the screen available to applications.
Device implementations MUST make available a portion of the display to
applications that meets the requirements defined in Section 7.1.1.
Device implementations MUST display the navigation keys when applications do
not specify a system UI mode, or specify SYSTEM_UI_FLAG_VISIBLE.
Device implementations MUST present the navigation keys in an unobtrusive
"low profile" (eg. dimmed) mode when applications specify
SYSTEM_UI_FLAG_LOW_PROFILE.
Device implementations MUST hide the navigation keys when applications
specify SYSTEM_UI_FLAG_HIDE_NAVIGATION.
Device implementation MUST present a Menu key to applications when
targetSdkVersion <= 10 and SHOULD NOT present a Menu key when the
targetSdkVersion > 10.
Device implementations MUST make available a portion of the display to
applications that meets the requirements defined in Section 7.1.1.

7.2.4. Touchscreen input

Device implementations SHOULD have a pointer input system of some kind (either
mouse-like, or touch). However, if a device implementation does not support a pointer
input system, it MUST NOT report the android.hardware.touchscreen or
android.hardware.faketouch feature constant. Device implementations that do

http://developer.android.com
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources40
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources40
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources63
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/section-7.1.1
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/section-7.1.1

include a pointer input system:

SHOULD support fully independently tracked pointers, if the device input system
supports multiple pointers
MUST report the value of android.content.res.Configuration.touchscreen
[Resources, 40] corresponding to the type of the specific touchscreen on the
device

Android 4.0 includes support for a variety of touch screens, touch pads, and fake touch
input devices. Touch screen based device implementations are associated with a
display [Resources, 71] such that the user has the impression of directly manipulating
items on screen. Since the user is directly touching the screen, the system does not
require any additional affordances to indicate the objects being manipulated. In
contrast, a fake touch interface provides a user input system that approximates a
subset of touchscreen capabilities. For example, a mouse or remote control that drives
an on-screen cursor approximates touch, but requires the user to first point or focus
then click. Numerous input devices like the mouse, trackpad, gyro-based air mouse,
gyro-pointer, joystick, and multi-touch trackpad can support fake touch interactions.
Android 4.0 includes the feature constant android.hardware.faketouch, which
corresponds to a high-fidelity non-touch (that is, pointer-based) input device such as a
mouse or trackpad that can adequately emulate touch-based input (including basic
gesture support), and indicates that the device supports an emulated subset of
touchscreen functionality. Device implementations that declare the fake touch feature
MUST meet the fake touch requirements in Section 7.2.5.

Device implementations MUST report the correct feature corresponding to the type of
input used. Device implementations that include a touchscreen (single-touch or better)
MUST report the platform feature constant android.hardware.touchscreen. Device
implementations that report the platform feature constant
android.hardware.touchscreen MUST also report the platform feature constant
android.hardware.faketouch. Device implementations that do not include a
touchscreen (and rely on a pointer device only) MUST NOT report any touchscreen
feature, and MUST report only android.hardware.faketouch if they meet the fake
touch requirements in Section 7.2.5.

7.2.5. Fake touch input

Device implementations that declare support for android.hardware.faketouch

MUST report the absolute X and Y screen positions of the pointer location and
display a visual pointer on the screen[Resources, 70]
MUST report touch event with the action code [Resources, 70] that specifies the
state change that occurs on the pointer going down or up on the screen
[Resources, 70]
MUST support pointer down and up on an object on the screen, which allows
users to emulate tap on an object on the screen
MUST support pointer down, pointer up, pointer down then pointer up in the same
place on an object on the screen within a time threshold, which allows users to
emulate double tap on an object on the screen [Resources, 70]
MUST support pointer down on an arbitrary point on the screen, pointer move to
any other arbitrary point on the screen, followed by a pointer up, which allows
users to emulate a touch drag
MUST support pointer down then allow users to quickly move the object to a
different position on the screen and then pointer up on the screen, which allows
users to fling an object on the screen

Devices that declare support for android.hardware.faketouch.multitouch.distinct
MUST meet the requirements for faketouch above, and MUST also support distinct
tracking of two or more independent pointer inputs.

7.2.6. Microphone

Device implementations MAY omit a microphone. However, if a device implementation
omits a microphone, it MUST NOT report the android.hardware.microphone feature
constant, and must implement the audio recording API as no-ops, per Section 7.
Conversely, device implementations that do possess a microphone:

MUST report the android.hardware.microphone feature constant
SHOULD meet the audio quality requirements in Section 5.4
SHOULD meet the audio latency requirements in Section 5.5

7.3. Sensors

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources40
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources71
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/section 7.2.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/section 7.2.5
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources70
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources70
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources70
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources70
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/section-7
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/section-5.4
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/section-5.5

Android 4.1 includes APIs for accessing a variety of sensor types. Devices
implementations generally MAY omit these sensors, as provided for in the following
subsections. If a device includes a particular sensor type that has a corresponding API
for third-party developers, the device implementation MUST implement that API as
described in the Android SDK documentation. For example, device implementations:

MUST accurately report the presence or absence of sensors per the
android.content.pm.PackageManager class. [Resources, 37]
MUST return an accurate list of supported sensors via the
SensorManager.getSensorList() and similar methods
MUST behave reasonably for all other sensor APIs (for example, by returning true
or false as appropriate when applications attempt to register listeners, not calling
sensor listeners when the corresponding sensors are not present; etc.)
MUST report all sensor measurements using the relevant International System of
Units (i.e. metric) values for each sensor type as defined in the Android SDK
documentation [Resources, 41]

The list above is not comprehensive; the documented behavior of the Android SDK is
to be considered authoritative.

Some sensor types are synthetic, meaning they can be derived from data provided by
one or more other sensors. (Examples include the orientation sensor, and the linear
acceleration sensor.) Device implementations SHOULD implement these sensor
types, when they include the prerequisite physical sensors.

The Android 4.1 APIs introduce a notion of a "streaming" sensor, which is one that
returns data continuously, rather than only when the data changes. Device
implementations MUST continuously provide periodic data samples for any API
indicated by the Android 4.1 SDK documentation to be a streaming sensor.

7.3.1. Accelerometer

Device implementations SHOULD include a 3-axis accelerometer. If a device
implementation does include a 3-axis accelerometer, it:

SHOULD be able to deliver events at 120 Hz or greater. Note that while the
accelerometer frequency above is stated as "SHOULD" for Android 4.1, the
Compatibility Definition for a future version is planned to change these to
"MUST". That is, these standards are optional in Android 4.1 but will be
required in future versions. Existing and new devices that run Android 4.1 are
very strongly encouraged to meet these requirements in Android 4.1 so
they will be able to upgrade to the future platform releases
MUST comply with the Android sensor coordinate system as detailed in the
Android APIs (see [Resources, 41])
MUST be capable of measuring from freefall up to twice gravity (2g) or more on
any three-dimensional vector
MUST have 8-bits of accuracy or more
MUST have a standard deviation no greater than 0.05 m/s^2

7.3.2. Magnetometer

Device implementations SHOULD include a 3-axis magnetometer (i.e. compass.) If a
device does include a 3-axis magnetometer, it:

MUST be able to deliver events at 10 Hz or greater
MUST comply with the Android sensor coordinate system as detailed in the
Android APIs (see [Resources, 41]).
MUST be capable of sampling a range of field strengths adequate to cover the
geomagnetic field
MUST have 8-bits of accuracy or more
MUST have a standard deviation no greater than 0.5 µT

7.3.3. GPS

Device implementations SHOULD include a GPS receiver. If a device implementation
does include a GPS receiver, it SHOULD include some form of "assisted GPS"
technique to minimize GPS lock-on time.

7.3.4. Gyroscope

Device implementations SHOULD include a gyroscope (i.e. angular change sensor.)
Devices SHOULD NOT include a gyroscope sensor unless a 3-axis accelerometer is
also included. If a device implementation includes a gyroscope, it:

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources37
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources41
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources41
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources41

MUST be temperature compensated
MUST be capable of measuring orientation changes up to 5.5*Pi
radians/second (that is, approximately 1,000 degrees per second)
SHOULD be able to deliver events at 200 Hz or greater. Note that while the
gyroscope frequency above is stated as "SHOULD" for Android 4.1, the
Compatibility Definition for a future version is planned to change these to
"MUST". That is, these standards are optional in Android 4.1 but will be
required in future versions. Existing and new devices that run Android 4.1 are
very strongly encouraged to meet these requirements in Android 4.1 so
they will be able to upgrade to the future platform releases
MUST have 12-bits of accuracy or more
MUST have a variance no greater than 1e-7 rad^2 / s^2 per Hz (variance per Hz,
or rad^2 / s). The variance is allowed to vary with the sampling rate, but must be
constrained by this value. In other words, if you measure the variance of the gyro
at 1 Hz sampling rate it should be no greater than 1e-7 rad^2/s^2.
MUST have timestamps as close to when the hardware event happened as
possible. The constant latency must be removed.

7.3.5. Barometer

Device implementations MAY include a barometer (i.e. ambient air pressure sensor.) If
a device implementation includes a barometer, it:

MUST be able to deliver events at 5 Hz or greater
MUST have adequate precision to enable estimating altitude
MUST be temperature compensated

7.3.7. Thermometer

Device implementations MAY but SHOULD NOT include a thermometer (i.e.
temperature sensor.) If a device implementation does include a thermometer, it MUST
measure the temperature of the device CPU. It MUST NOT measure any other
temperature. (Note that this sensor type is deprecated in the Android 4.1 APIs.)

7.3.7. Photometer

Device implementations MAY include a photometer (i.e. ambient light sensor.)

7.3.8. Proximity Sensor

Device implementations MAY include a proximity sensor. If a device implementation
does include a proximity sensor, it MUST measure the proximity of an object in the
same direction as the screen. That is, the proximity sensor MUST be oriented to detect
objects close to the screen, as the primary intent of this sensor type is to detect a
phone in use by the user. If a device implementation includes a proximity sensor with
any other orientation, it MUST NOT be accessible through this API. If a device
implementation has a proximity sensor, it MUST be have 1-bit of accuracy or more.

7.4. Data Connectivity

7.4.1. Telephony

"Telephony" as used by the Android 4.1 APIs and this document refers specifically to
hardware related to placing voice calls and sending SMS messages via a GSM or
CDMA network. While these voice calls may or may not be packet-switched, they are
for the purposes of Android 4.1 considered independent of any data connectivity that
may be implemented using the same network. In other words, the Android "telephony"
functionality and APIs refer specifically to voice calls and SMS; for instance, device
implementations that cannot place calls or send/receive SMS messages MUST NOT
report the "android.hardware.telephony" feature or any sub-features, regardless of
whether they use a cellular network for data connectivity.

Android 4.1 MAY be used on devices that do not include telephony hardware. That is,
Android 4.1 is compatible with devices that are not phones. However, if a device
implementation does include GSM or CDMA telephony, it MUST implement full support
for the API for that technology. Device implementations that do not include telephony
hardware MUST implement the full APIs as no-ops.

7.4.2. IEEE 802.11 (WiFi)

Android 4.1 device implementations SHOULD include support for one or more forms
of 802.11 (b/g/a/n, etc.) If a device implementation does include support for 802.11, it
MUST implement the corresponding Android API.

Device implementations MUST implement the multicast API as described in the SDK
documentation [Resources, 62]. Device implementations that do include Wifi support
MUST support multicast DNS (mDNS). Device implementations MUST not filter mDNS
packets (224.0.0.251) at any time of operation including when the screen is not in an
active state.

7.4.2.1. WiFi Direct

Device implementations SHOULD include support for Wifi direct (Wifi peer-to-peer). If
a device implementation does include support for Wifi direct, it MUST implement the
corresponding Android API as described in the SDK documentation [Resources, 68]. If
a device implementation includes support for Wifi direct, then it:

MUST support regular Wifi operation
SHOULD support concurrent wifi and wifi Direct operation

7.4.3. Bluetooth

Device implementations SHOULD include a Bluetooth transceiver. Device
implementations that do include a Bluetooth transceiver MUST enable the RFCOMM-
based Bluetooth API as described in the SDK documentation [Resources, 42]. Device
implementations SHOULD implement relevant Bluetooth profiles, such as A2DP,
AVRCP, OBEX, etc. as appropriate for the device.

The Compatibility Test Suite includes cases that cover basic operation of the Android
RFCOMM Bluetooth API. However, since Bluetooth is a communications protocol
between devices, it cannot be fully tested by unit tests running on a single device.
Consequently, device implementations MUST also pass the human-driven Bluetooth
test procedure described in Appendix A.

7.4.4. Near-Field Communications

Device implementations SHOULD include a transceiver and related hardware for
Near-Field Communications (NFC). If a device implementation does include NFC
hardware, then it:

MUST report the android.hardware.nfc feature from the
android.content.pm.PackageManager.hasSystemFeature() method.
[Resources, 37]
MUST be capable of reading and writing NDEF messages via the following NFC
standards:

MUST be capable of acting as an NFC Forum reader/writer (as defined by
the NFC Forum technical specification NFCForum-TS-DigitalProtocol-1.0)
via the following NFC standards:

NfcA (ISO14443-3A)
NfcB (ISO14443-3B)
NfcF (JIS 6319-4)
IsoDep (ISO 14443-4)
NFC Forum Tag Types 1, 2, 3, 4 (defined by the NFC Forum)

SHOULD be capable of reading and writing NDEF messages via the following
NFC standards. Note that while the NFC standards below are stated as
"SHOULD" for Android 4.1, the Compatibility Definition for a future version is
planned to change these to "MUST". That is, these standards are optional in
Android 4.1 but will be required in future versions. Existing and new devices
that run Android 4.1 are very strongly encouraged to meet these
requirements in Android 4.1 so they will be able to upgrade to the future
platform releases.

NfcV (ISO 15693)
MUST be capable of transmitting and receiving data via the following peer-to-
peer standards and protocols:

ISO 18092
LLCP 1.0 (defined by the NFC Forum)
SDP 1.0 (defined by the NFC Forum)
NDEF Push Protocol [Resources, 43]
SNEP 1.0 (defined by the NFC Forum)

MUST include support for Android Beam [Resources, 65]:
MUST implement the SNEP default server. Valid NDEF messages
received by the default SNEP server MUST be dispatched to applications
using the android.nfc.ACTION_NDEF_DISCOVERED intent. Disabling
Android Beam in settings MUST NOT disable dispatch of incoming NDEF
message.
Device implementations MUST honor the
android.settings.NFCSHARING_SETTINGS intent to show NFC sharing

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources62
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources68
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources42
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources37
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources43
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources65

settings [Resources, 67].
MUST implement the NPP server. Messages received by the NPP server
MUST be processed the same way as the SNEP default server.
MUST implement a SNEP client and attempt to send outbound P2P NDEF
to the default SNEP server when Android Beam is enabled. If no default
SNEP server is found then the client MUST attempt to send to an NPP
server.
MUST allow foreground activities to set the outbound P2P NDEF message
using android.nfc.NfcAdapter.setNdefPushMessage, and
android.nfc.NfcAdapter.setNdefPushMessageCallback, and
android.nfc.NfcAdapter.enableForegroundNdefPush.
SHOULD use a gesture or on-screen confirmation, such as 'Touch to
Beam', before sending outbound P2P NDEF messages.
SHOULD enable Android Beam by default
MUST support NFC Connection handover to Bluetooth when the device
supports Bluetooth Object Push Profile. Device implementations must
support connection handover to Bluetooth when using
android.nfc.NfcAdapter.setBeamPushUris, by implementing the
"Connection Handover version 1.2" [Resources, 60] and "Bluetooth Secure
Simple Pairing Using NFC version 1.0" [Resources, 61] specs from the
NFC Forum. Such an implementation SHOULD use SNEP GET requests
for exchanging the handover request / select records over NFC, and it
MUST use the Bluetooth Object Push Profile for the actual Bluetooth data
transfer.

MUST poll for all supported technologies while in NFC discovery mode.
SHOULD be in NFC discovery mode while the device is awake with the screen
active and the lock-screen unlocked.

(Note that publicly available links are not available for the JIS, ISO, and NFC Forum
specifications cited above.)

Additionally, device implementations MAY include reader/writer support for the
following MIFARE technologies.

MIFARE Classic (NXP MF1S503x [Resources, 44], MF1S703x [Resources, 44])
MIFARE Ultralight (NXP MF0ICU1 [Resources, 46], MF0ICU2 [Resources, 46])
NDEF on MIFARE Classic (NXP AN130511 [Resources, 48], AN130411
[Resources, 49])

Note that Android 4.1 includes APIs for these MIFARE types. If a device
implementation supports MIFARE in the reader/writer role, it:

MUST implement the corresponding Android APIs as documented by the
Android SDK
MUST report the feature com.nxp.mifare from the
android.content.pm.PackageManager.hasSystemFeature() method.
[Resources, 37] Note that this is not a standard Android feature, and as such
does not appear as a constant on the PackageManager class.
MUST NOT implement the corresponding Android APIs nor report the
com.nxp.mifare feature unless it also implements general NFC support as
described in this section

If a device implementation does not include NFC hardware, it MUST NOT declare the
android.hardware.nfc feature from the
android.content.pm.PackageManager.hasSystemFeature() method [Resources, 37],
and MUST implement the Android 4.1 NFC API as a no-op.

As the classes android.nfc.NdefMessage and android.nfc.NdefRecord represent a
protocol-independent data representation format, device implementations MUST
implement these APIs even if they do not include support for NFC or declare the
android.hardware.nfc feature.

7.4.5. Minimum Network Capability

Device implementations MUST include support for one or more forms of data
networking. Specifically, device implementations MUST include support for at least one
data standard capable of 200Kbit/sec or greater. Examples of technologies that
satisfy this requirement include EDGE, HSPA, EV-DO, 802.11g, Ethernet, etc.

Device implementations where a physical networking standard (such as Ethernet) is
the primary data connection SHOULD also include support for at least one common
wireless data standard, such as 802.11 (WiFi).

Devices MAY implement more than one form of data connectivity.

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources67
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources60
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources61
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources44
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources44
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources46
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources46
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources48
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources49
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources37
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources37

7.5. Cameras

Device implementations SHOULD include a rear-facing camera, and MAY include a
front-facing camera. A rear-facing camera is a camera located on the side of the
device opposite the display; that is, it images scenes on the far side of the device, like
a traditional camera. A front-facing camera is a camera located on the same side of
the device as the display; that is, a camera typically used to image the user, such as for
video conferencing and similar applications.

7.5.1. Rear-Facing Camera

Device implementations SHOULD include a rear-facing camera. If a device
implementation includes a rear-facing camera, it:

MUST have a resolution of at least 2 megapixels
SHOULD have either hardware auto-focus, or software auto-focus implemented
in the camera driver (transparent to application software)
MAY have fixed-focus or EDOF (extended depth of field) hardware
MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be
lit while an android.hardware.Camera.PreviewCallback instance has been
registered on a Camera preview surface, unless the application has explicitly
enabled the flash by enabling the FLASH_MODE_AUTO or FLASH_MODE_ON attributes
of a Camera.Parameters object. Note that this constraint does not apply to the
device's built-in system camera application, but only to third-party applications
using Camera.PreviewCallback.

7.5.2. Front-Facing Camera

Device implementations MAY include a front-facing camera. If a device implementation
includes a front-facing camera, it:

MUST have a resolution of at least VGA (that is, 640x480 pixels)
MUST NOT use a front-facing camera as the default for the Camera API. That is,
the camera API in Android 4.1 has specific support for front-facing cameras, and
device implementations MUST NOT configure the API to to treat a front-facing
camera as the default rear-facing camera, even if it is the only camera on the
device.
MAY include features (such as auto-focus, flash, etc.) available to rear-facing
cameras as described in Section 7.5.1.
MUST horizontally reflect (i.e. mirror) the stream displayed by an app in a
CameraPreview, as follows:

If the device implementation is capable of being rotated by user (such as
automatically via an accelerometer or manually via user input), the camera
preview MUST be mirrored horizontally relative to the device's current
orientation.
If the current application has explicitly requested that the Camera display
be rotated via a call to the
android.hardware.Camera.setDisplayOrientation() [Resources, 50]
method, the camera preview MUST be mirrored horizontally relative to the
orientation specified by the application.
Otherwise, the preview MUST be mirrored along the device's default
horizontal axis.

MUST mirror the image displayed by the postview in the same manner as the
camera preview image stream. (If the device implementation does not support
postview, this requirement obviously does not apply.)
MUST NOT mirror the final captured still image or video streams returned to
application callbacks or committed to media storage

7.5.3. Camera API Behavior

Device implementations MUST implement the following behaviors for the camera-
related APIs, for both front- and rear-facing cameras:

1. If an application has never called
android.hardware.Camera.Parameters.setPreviewFormat(int), then the
device MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview
data provided to application callbacks.

2. If an application registers an android.hardware.Camera.PreviewCallback
instance and the system calls the onPreviewFrame() method when the preview
format is YCbCr_420_SP, the data in the byte[] passed into onPreviewFrame()
must further be in the NV21 encoding format. That is, NV21 MUST be the default.

3. Device implementations MUST support the YV12 format (as denoted by the

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources50

android.graphics.ImageFormat.YV12 constant) for camera previews for both
front- and rear-facing cameras. (The hardware video decoder and camera may
use any native pixel format, but the device implementation MUST support
conversion to YV12.)

Device implementations MUST implement the full Camera API included in the Android
4.1 SDK documentation [Resources, 51]), regardless of whether the device includes
hardware autofocus or other capabilities. For instance, cameras that lack autofocus
MUST still call any registered android.hardware.Camera.AutoFocusCallback
instances (even though this has no relevance to a non-autofocus camera.) Note that
this does apply to front-facing cameras; for instance, even though most front-facing
cameras do not support autofocus, the API callbacks must still be "faked" as
described.

Device implementations MUST recognize and honor each parameter name defined as
a constant on the android.hardware.Camera.Parameters class, if the underlying
hardware supports the feature. If the device hardware does not support a feature, the
API must behave as documented. Conversely, Device implementations MUST NOT
honor or recognize string constants passed to the
android.hardware.Camera.setParameters() method other than those documented as
constants on the android.hardware.Camera.Parameters. That is, device
implementations MUST support all standard Camera parameters if the hardware
allows, and MUST NOT support custom Camera parameter types.

Device implementations MUST broadcast the Camera.ACTION_NEW_PICTURE intent
whenever a new picture is taken by the camera and the entry of the picture has been
added to the media store.

Device implementations MUST broadcast the Camera.ACTION_NEW_VIDEO intent
whenever a new video is recorded by the camera and the entry of the picture has been
added to the media store.

7.5.4. Camera Orientation

Both front- and rear-facing cameras, if present, MUST be oriented so that the long
dimension of the camera aligns with the screen's long dimention. That is, when the
device is held in the landscape orientation, cameras MUST capture images in the
landscape orientation. This applies regardless of the device's natural orientation; that
is, it applies to landscape-primary devices as well as portrait-primary devices.

7.6. Memory and Storage

7.6.1. Minimum Memory and Storage

Device implementations MUST have at least 340MB of memory available to the kernel
and userspace. The 340MB MUST be in addition to any memory dedicated to
hardware components such as radio, video, and so on that is not under the kernel's
control.

Device implementations MUST have at least 350MB of non-volatile storage available
for application private data. That is, the /data partition MUST be at least 350MB.

The Android APIs include a Download Manager that applications may use to download
data files [Resources, 56]. The device implementation of the Download Manager
MUST be capable of downloading individual files of at least 100MB in size to the
default "cache" location.

7.6.2. Application Shared Storage

Device implementations MUST offer shared storage for applications. The shared
storage provided MUST be at least 1GB in size.

Device implementations MUST be configured with shared storage mounted by default,
"out of the box". If the shared storage is not mounted on the Linux path /sdcard, then
the device MUST include a Linux symbolic link from /sdcard to the actual mount point.

Device implementations MUST enforce as documented the
android.permission.WRITE_EXTERNAL_STORAGE permission on this shared storage.
Shared storage MUST otherwise be writable by any application that obtains that
permission.

Device implementations MAY have hardware for user-accessible removable storage,
such as a Secure Digital card. Alternatively, device implementations MAY allocate
internal (non-removable) storage as shared storage for apps.

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources51
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources56

Regardless of the form of shared storage used, device implementations MUST
provide some mechanism to access the contents of shared storage from a host
computer, such as USB mass storage (UMS) or Media Transfer Protocol (MTP).
Device implementations MAY use USB mass storage, but SHOULD use Media
Transfer Protocol. If the device implementation supports Media Transfer Protocol:

The device implementation SHOULD be compatible with the reference Android
MTP host, Android File Transfer [Resources, 57].
The device implementation SHOULD report a USB device class of 0x00.
The device implementation SHOULD report a USB interface name of 'MTP'.

If the device implementation lacks USB ports, it MUST provide a host computer with
access to the contents of shared storage by some other means, such as a network file
system.

It is illustrative to consider two common examples. If a device implementation includes
an SD card slot to satisfy the shared storage requirement, a FAT-formatted SD card
1GB in size or larger MUST be included with the device as sold to users, and MUST
be mounted by default. Alternatively, if a device implementation uses internal fixed
storage to satisfy this requirement, that storage MUST be 1GB in size or larger and
mounted on /sdcard (or /sdcard MUST be a symbolic link to the physical location if it
is mounted elsewhere.)

Device implementations that include multiple shared storage paths (such as both an
SD card slot and shared internal storage) SHOULD modify the core applications such
as the media scanner and ContentProvider to transparently support files placed in both
locations.

7.7. USB

Device implementations SHOULD include a USB client port, and SHOULD include a
USB host port.

If a device implementation includes a USB client port:

the port MUST be connectable to a USB host with a standard USB-A port
the port SHOULD use the micro USB form factor on the device side. Existing
and new devices that run Android 4.1 are very strongly encouraged to meet
these requirements in Android 4.1 so they will be able to upgrade to the future
platform releases
the port SHOULD be centered in the middle of an edge. Device implementations
SHOULD either locate the port on the bottom of the device (according to natural
orientation) or enable software screen rotation for all apps (including home
screen), so that the display draws correctly when the device is oriented with the
port at bottom. Existing and new devices that run Android 4.1 are very strongly
encouraged to meet these requirements in Android 4.1 so they will be able
to upgrade to future platform releases.
if the device has other ports (such as a non-USB charging port) it SHOULD be
on the same edge as the micro-USB port
it MUST allow a host connected to the device to access the contents of the
shared storage volume using either USB mass storage or Media Transfer
Protocol
it MUST implement the Android Open Accessory API and specification as
documented in the Android SDK documentation, and MUST declare support for
the hardware feature android.hardware.usb.accessory [Resources, 52]
it MUST implement the USB audio class as documented in the Android SDK
documentation [Resources, 66]
it SHOULD implement support for USB battery charging specification
[Resources, 64] Existing and new devices that run Android 4.1 are very
strongly encouraged to meet these requirements in Android 4.1 so they
will be able to upgrade to the future platform releases

If a device implementation includes a USB host port:

it MAY use a non-standard port form factor, but if so MUST ship with a cable or
cables adapting the port to standard USB-A
it MUST implement the Android USB host API as documented in the Android
SDK, and MUST declare support for the hardware feature
android.hardware.usb.host [Resources, 53]

Device implementations MUST implement the Android Debug Bridge. If a device
implementation omits a USB client port, it MUST implement the Android Debug Bridge
via local-area network (such as Ethernet or 802.11)

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources57
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources52
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources66
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources64
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources53

8. Performance Compatibility
Device implementations MUST meet the key performance metrics of an Android 4.1
compatible device defined in the table below:

Metric Performance Threshold Comments

Application
Launch Time

The following applications
should launch within the
specified time.

Browser: less than
1300ms
Contacts: less than
700ms
Settings: less than
700ms

The launch time is measured as the
total time to complete loading the
default activity for the application,
including the time it takes to start the
Linux process, load the Android
package into the Dalvik VM, and call
onCreate.

Simultaneous
Applications

When multiple applications
have been launched, re-
launching an already-
running application after it
has been launched must
take less than the original
launch time.

9. Security Model Compatibility
Device implementations MUST implement a security model consistent with the Android
platform security model as defined in Security and Permissions reference document in
the APIs [Resources, 54] in the Android developer documentation. Device
implementations MUST support installation of self-signed applications without
requiring any additional permissions/certificates from any third parties/authorities.
Specifically, compatible devices MUST support the security mechanisms described in
the follow sub-sections.

9.1. Permissions

Device implementations MUST support the Android permissions model as defined in
the Android developer documentation [Resources, 54]. Specifically, implementations
MUST enforce each permission defined as described in the SDK documentation; no
permissions may be omitted, altered, or ignored. Implementations MAY add additional
permissions, provided the new permission ID strings are not in the android.*
namespace.

9.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in
which each application runs as a unique Unix-style UID and in a separate process.
Device implementations MUST support running multiple applications as the same
Linux user ID, provided that the applications are properly signed and constructed, as
defined in the Security and Permissions reference [Resources, 54].

9.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as
defined in as defined in the Security and Permissions reference [Resources, 54].

9.4. Alternate Execution Environments

Device implementations MAY include runtime environments that execute applications
using some other software or technology than the Dalvik virtual machine or native
code. However, such alternate execution environments MUST NOT compromise the
Android security model or the security of installed Android applications, as described
in this section.

Alternate runtimes MUST themselves be Android applications, and abide by the
standard Android security model, as described elsewhere in Section 9.

Alternate runtimes MUST NOT be granted access to resources protected by
permissions not requested in the runtime's AndroidManifest.xml file via the <uses-
permission> mechanism.

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources54
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources54
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources54
file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources54

Alternate runtimes MUST NOT permit applications to make use of features protected
by Android permissions restricted to system applications.

Alternate runtimes MUST abide by the Android sandbox model. Specifically:

Alternate runtimes SHOULD install apps via the PackageManager into separate
Android sandboxes (that is, Linux user IDs, etc.)
Alternate runtimes MAY provide a single Android sandbox shared by all
applications using the alternate runtime
Alternate runtimes and installed applications using an alternate runtime MUST
NOT reuse the sandbox of any other app installed on the device, except through
the standard Android mechanisms of shared user ID and signing certificate
Alternate runtimes MUST NOT launch with, grant, or be granted access to the
sandboxes corresponding to other Android applications

Alternate runtimes MUST NOT be launched with, be granted, or grant to other
applications any privileges of the superuser (root), or of any other user ID.

The .apk files of alternate runtimes MAY be included in the system image of a device
implementation, but MUST be signed with a key distinct from the key used to sign other
applications included with the device implementation.

When installing applications, alternate runtimes MUST obtain user consent for the
Android permissions used by the application. That is, if an application needs to make
use of a device resource for which there is a corresponding Android permission (such
as Camera, GPS, etc.), the alternate runtime MUST inform the user that the application
will be able to access that resource. If the runtime environment does not record
application capabilities in this manner, the runtime environment MUST list all
permissions held by the runtime itself when installing any application using that runtime.

10. Software Compatibility Testing
Device implementations MUST pass all tests described in this section.

However, note that no software test package is fully comprehensive. For this reason,
device implementers are very strongly encouraged to make the minimum number of
changes as possible to the reference and preferred implementation of Android 4.1
available from the Android Open Source Project. This will minimize the risk of
introducing bugs that create incompatibilities requiring rework and potential device
updates.

10.1. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS)
[Resources, 2] available from the Android Open Source Project, using the final
shipping software on the device. Additionally, device implementers SHOULD use the
reference implementation in the Android Open Source tree as much as possible, and
MUST ensure compatibility in cases of ambiguity in CTS and for any
reimplementations of parts of the reference source code.

The CTS is designed to be run on an actual device. Like any software, the CTS may
itself contain bugs. The CTS will be versioned independently of this Compatibility
Definition, and multiple revisions of the CTS may be released for Android 4.1. Device
implementations MUST pass the latest CTS version available at the time the device
software is completed.

10.2. CTS Verifier

Device implementations MUST correctly execute all applicable cases in the CTS
Verifier. The CTS Verifier is included with the Compatibility Test Suite, and is intended
to be run by a human operator to test functionality that cannot be tested by an
automated system, such as correct functioning of a camera and sensors.

The CTS Verifier has tests for many kinds of hardware, including some hardware that
is optional. Device implementations MUST pass all tests for hardware which they
possess; for instance, if a device possesses an accelerometer, it MUST correctly
execute the Accelerometer test case in the CTS Verifier. Test cases for features noted
as optional by this Compatibility Definition Document MAY be skipped or omitted.

Every device and every build MUST correctly run the CTS Verifier, as noted above.
However, since many builds are very similar, device implementers are not expected to
explicitly run the CTS Verifier on builds that differ only in trivial ways. Specifically,
device implementations that differ from an implementation that has passed the CTS
Verfier only by the set of included locales, branding, etc. MAY omit the CTS Verifier

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources02

test.

10.3. Reference Applications

Device implementers MUST test implementation compatibility using the following open
source applications:

The "Apps for Android" applications [Resources, 55]
Replica Island (available in Android Market)

Each app above MUST launch and behave correctly on the implementation, for the
implementation to be considered compatible.

11. Updatable Software
Device implementations MUST include a mechanism to replace the entirety of the
system software. The mechanism need not perform "live" upgrades - that is, a device
restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software
preinstalled on the device. For instance, any of the following approaches will satisfy
this requirement:

Over-the-air (OTA) downloads with offline update via reboot
"Tethered" updates over USB from a host PC
"Offline" updates via a reboot and update from a file on removable storage

The update mechanism used MUST support updates without wiping user data. That is,
the update mechanism MUST preserve application private data and application
shared data. Note that the upstream Android software includes an update mechanism
that satisfies this requirement.

If an error is found in a device implementation after it has been released but within its
reasonable product lifetime that is determined in consultation with the Android
Compatibility Team to affect the compatibility of third-party applications, the device
implementer MUST correct the error via a software update available that can be
applied per the mechanism just described.

12. Contact Us
You can contact the document authors at compatibility@android.com for clarifications
and to bring up any issues that you think the document does not cover.

file:///usr/local/google/home/gurunagarajan/android_dev/master/vendor/android/compatibility/cdd/jb/cdd-jb.xhtml#resources55
mailto:compatibility@android.com

Appendix A - Bluetooth Test Procedure
The Compatibility Test Suite includes cases that cover basic operation of the Android
RFCOMM Bluetooth API. However, since Bluetooth is a communications protocol
between devices, it cannot be fully tested by unit tests running on a single device.
Consequently, device implementations MUST also pass the human-operated Bluetooth
test procedure described below.

The test procedure is based on the BluetoothChat sample app included in the Android
open source project tree. The procedure requires two devices:

a candidate device implementation running the software build to be tested
a separate device implementation already known to be compatible, and of a
model from the device implementation being tested - that is, a "known good"
device implementation

The test procedure below refers to these devices as the "candidate" and "known
good" devices, respectively.

Setup and Installation

1. Build BluetoothChat.apk via 'make samples' from an Android source code tree
2. Install BluetoothChat.apk on the known-good device
3. Install BluetoothChat.apk on the candidate device

Test Bluetooth Control by Apps

1. Launch BluetoothChat on the candidate device, while Bluetooth is disabled
2. Verify that the candidate device either turns on Bluetooth, or prompts the user

with a dialog to turn on Bluetooth

Test Pairing and Communication

1. Launch the Bluetooth Chat app on both devices
2. Make the known-good device discoverable from within BluetoothChat (using the

Menu)
3. On the candidate device, scan for Bluetooth devices from within BluetoothChat

(using the Menu) and pair with the known-good device
4. Send 10 or more messages from each device, and verify that the other device

receives them correctly
5. Close the BluetoothChat app on both devices by pressing Home
6. Unpair each device from the other, using the device Settings app

Test Pairing and Communication in the Reverse
Direction

1. Launch the Bluetooth Chat app on both devices.
2. Make the candidate device discoverable from within BluetoothChat (using the

Menu).
3. On the known-good device, scan for Bluetooth devices from within BluetoothChat

(using the Menu) and pair with the candidate device.
4. Send 10 or messages from each device, and verify that the other device

receives them correctly.
5. Close the Bluetooth Chat app on both devices by pressing Back repeatedly to

get to the Launcher.

Test Re-Launches

1. Re-launch the Bluetooth Chat app on both devices.
2. Send 10 or messages from each device, and verify that the other device

receives them correctly.

Note: the above tests have some cases which end a test section by using Home, and
some using Back. These tests are not redundant and are not optional: the objective is
to verify that the Bluetooth API and stack works correctly both when Activities are
explicitly terminated (via the user pressing Back, which calls finish()), and implicitly sent
to background (via the user pressing Home.) Each test sequence MUST be performed
as described.

