
Termination of Polynomial Programs

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma ?

Computer Science Department
Stanford University

Stanford, CA 94305-9045
{arbrad,zm,sipma}@theory.stanford.edu

Abstract. We present a technique to prove termination of multipath
polynomial programs, an expressive class of loops that enables practical
code abstraction and analysis. The technique is based on finite differences
of expressions over transition systems. Although no complete method ex-
ists for determining termination for this class of loops, we show that our
technique is useful in practice. We demonstrate that our prototype im-
plementation for C source code readily scales to large software projects,
proving termination for a high percentage of targeted loops.

1 Introduction

Guaranteed termination of program loops is necessary for many applications,
especially those for which unexpected behavior can be catastrophic. Even for ap-
plications that are not considered “safety critical,” applying automatic methods
for proving loop termination would certainly do no harm. Additionally, prov-
ing general temporal properties of infinite state programs requires termination
proofs, for which automatic methods are welcome [4, 7, 10].

We present a method of nonlinear termination analysis for imperative loops
with multiple paths, polynomial guards, and polynomial assignments. The
method is nonlinear, first, because the guards and assignments need not be lin-
ear and, second, because it can prove the termination of terminating loops that
do not have linear ranking functions. The method is sound, but not complete.
Indeed, we show that no complete method for this class of programs exists. In
practical programs, however, our method proves termination of a high percentage
of the targeted loops at low computation cost, and hence is useful.

Recent work on automatic proofs of termination for linear imperative loops
has mostly focused on the synthesis of linear ranking functions. A ranking func-
tion for a loop maps the values of the loop variables to a well-founded domain;
further, it decreases value on each iteration. A linear ranking function is a ranking
function that is a linear combination of the loop variables and a constant. Colón

? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134
and CCR-02-09237, by ARO grant DAAD19-01-1-0723, by ARPA/AF contracts
F33615-00-C-1693 and F33615-99-C-3014, by NAVY/ONR contract N00014-03-1-
0939. The first author was additionally supported by a Sang Samuel Wang Stanford
Graduate Fellowship.

and Sipma first address the synthesis of linear ranking functions in a deductive
manner [2]. They present a method based on the manipulation of polyhedral

cones, extending these results to loops with multiple paths and nested loops in
[3]. In [11], Podelski and Rybalchenko specialize the analysis to a less expressive
class of single-path imperative loops, providing an efficient and complete synthe-
sis method based on linear programming. Departing from linear ranking function
synthesis, Tiwari proves that the termination of a class of single-path loops with
linear guards and assignments is decidable, providing a decision procedure via
constructive proofs [13].

In the functional programming community, the size-change principle has re-
cently been proposed for termination analysis of functional programs [6]. This
effort is largely orthogonal to efforts for imperative loops. The principle focuses
on structural properties of functional programs, given that particular expressions
decrease or do not increase. While imperative loops, and in particular our ab-
stractions of such loops, may be translated to tail-recursive functional programs,
nothing is gained. Finding the proper size measure to show termination based on
the size-change principle is equivalent to proving termination in the imperative
setting. However, it is possible that our work may be applied as a size measure
for the termination analysis of some functional programs or recursive functions
in imperative programs, thus combining the strengths of each approach.

Our method extends termination analysis to multipath polynomial programs

(MPPs). We show that this class is sufficiently expressive to serve as a sound ab-
straction for a large class of loops appearing in ordinary C code. We implemented
our method and, via CIL [8], applied it to several large open-source C programs,
with size up to 75K lines of code. The timing results clearly demonstrate the
practicality of the analysis.

Unlike other recent work, we analyze loops via finite differences. Finite dif-
ferences have a long history in program analysis (e.g., [14, 5, 1]). These meth-
ods construct and solve difference equations and inequations, producing loop
invariants, running times, and termination proofs. While the equations and in-
equations are often difficult to solve, we observe that, for termination analysis
anyway, explicit solutions are unnecessary. Rather, our method analyzes loops
for qualitative behavior — specifically, that certain expressions eventually only
decrease by at least some positive amount, yet are bounded from below. We ad-
dress the challenge of characterizing such behavior in loops with multiple paths
and nonlinear assignments and guards.

The rest of the paper is ordered as follows. Section 2 introduces MPPs, while
Section 3 develops the mathematical foundations for our analysis. Section 4
then formalizes the termination analysis of MPPs, additionally suggesting an
alternate abstraction and analysis based on sets of guarded commands. Section
5 describes our prototype implementation and empirical results, and Section 6
concludes.

2 Preliminaries

Definition 1 (Multipath Polynomial Program) For real variables x =
(x1, . . . , xn), a multipath polynomial program (MPP) with m paths has the form
shown in Figure 1(a), where Pi and Pij are a vector and a matrix, respectively,
of polynomials in x. θ expresses the initial condition on x.

This abstraction of loops is convenient. Multiple paths and arbitrary Boolean
combinations of guard expressions are essential for a straightforward abstraction
of real code. Moreover, the initial condition, θ, is useful for expressing invari-
ants of variables unaffected by the loop. Such variables may appear in constant
expressions in our analysis.

initially θ

while
∨

i

∧

j
Pij(x) {≥, >} 0 do

τ1 : x := P1(x)
or
...
or

τm : x := Pm(x)
od

while x ≥ y do
τ1 : (x, y) := (x + 1, y + x)

or
τ2 : (x, y, z) := (x − z, y + z2, z − 1)

od

(a) (b)

Fig. 1. (a) Form of multipath polynomial programs. (b) Multipath polynomial pro-
gram chase.

Example 1. Consider the MPP chase in Figure 1(b). x and y may each increase
or decrease, depending on current values. Further, while they both eventually

increase, termination relies on y increasing more rapidly than x.

Theorem 1. (No Complete Method) Termination of MPPs is not semi-

decidable; that is, there is no complete method for determining termination of

MPPs.

Proof. We construct a reduction from Hilbert’s 10th problem, the existence of a
nonnegative integer root of an arbitrary Diophantine equation, which is unde-
cidable. First, we note that the existence of such a root is semi-decidable, via a
proper enumeration of vectors of integers: if a root exists, the enumeration termi-
nates with an affirmative answer. Thus, the nonexistence of nonnegative integer
roots is not semi-decidable. Now, we reduce from the question of nonexistence

of roots.

Instance: Given Diophantine equation P (x) = 0 in variables x = (x1, . . . , xn),
determine if there does not exist a nonnegative integer solution.

Reduction: Construct the multipath polynomial program with the following
variables: (1) one variable corresponding to each xi, called xi; (2) counter variable
c; and (3) upper limit variable N . The program has the following form:

initially c = 1 ∧
∧n

i=1 xi = 0
while c ≤ N do

{x1, c} := {x1 + 1, 2 · P (x)2 · c}
or
...
or

{xn, c} := {xn + 1, 2 · P (x)2 · c}
od

The program is a multipath polynomial program, as the loop condition and
assignment statements involve only polynomials. Computations in which always
P (x) 6= 0 are terminating, as c is initially 1 and at least doubles on each iteration,
while N remains constant. If P (x) = 0 does occur in a computation, then c is
assigned 0 on the subsequent iteration, and thus for every future iteration. When
such a computation is possible, there exist values for N as the upper bound on
c so that the computation does not terminate before P (x) = 0; afterward, c

remains 0, so the computation does not terminate. Since the program always
terminates if and only if there is no solution to the Diophantine equation, we
conclude that termination of multipath polynomial programs is neither decidable
nor even semi-decidable.

Given this fundamental negative result, this paper focuses on a sound and
computationally inexpensive method for concluding termination of multipath
polynomial programs. The approach essentially looks for expressions that evolve
with polynomial behavior, independently of the order in which transitions are
taken. A polynomially behaved expression must eventually only increase, only de-
crease, or — in a degenerate case — remain unchanged, even if its initial behavior
varies. The method that we present soundly classifies expressions that eventually
only decrease (or eventually only increase). An expression that eventually only
decreases, yet is bounded from below within the loop, indicates termination.

3 Finite Difference Trees

To classify polynomial expressions as eventually only decreasing with respect
to a transition system, we use finite differences over transitions. We first recall
the definition of a finite difference, placing finite differences in the context of
transition systems.

Definition 2 (Finite Difference) The finite difference of an expression E(x)
in x over assignment transition τ is

∆τE(x)
def
= E(x′) − E(x),

where τ provides the value of x′ in terms of x. Thus, ∆τE(x) is also an expression
in x. For convenience, we denote a chain of finite differences ∆τin

· · ·∆τi1
E(x)

by ∆τi1
,...,τin

E(x) or more simply by ∆i1,...,in
E(x) (note the reversal of the list).

If τin
= · · · = τi1 , we denote the chain by ∆n

τi1

E(x) or more simply by ∆n
i1

E(x).

For list of transitions T with length n, we say that ∆T E(x) is an nth order finite
difference.

Example 2. For program chase, the first, second, and third order finite differ-
ences of x − y over transition τ1 are the following:

∆1(x − y) = (x + 1) − (y + x) − (x − y) = 1 − x

∆2
1(x − y) = ∆1(∆1(x − y)) = ∆1(1 − x) = 1 − (x + 1) − (1 − x) = −1

∆3
1(x − y) = ∆1(∆

2
1(x − y)) = ∆1(−1) = (−1) − (−1) = 0.

Consider also the first and second order finite differences

∆2(x − y) = (x − z) − (y + z2) − (x − y) = −(z2 + z)
∆2,1(x − y) = ∆1(∆2(x − y)) = −(z2 + z) + (z2 + z) = 0.

Finite differences with respect to transitions in different orders can be repre-
sented in a finite difference tree.

Definition 3 (Finite Difference Tree) The finite difference tree (FDT) of
an expression E(x) with respect to transitions T = {τ1, . . . , τm} has root E(x)
and branching factor m. Each node, indexed by its position with respect to the
root, represents an expression over x; specifically, the node indexed I represents
finite difference ∆IE(x). The leaves of an FDT are nodes with only 0-children
(child nodes with value 0). Thus, each leaf is a constant expression with respect
to T . The height of an FDT is the longest path to a leaf. A finite FDT is a finite
difference tree with finite height.

For notational convenience, we sometimes refer to FDT nodes by their finite
difference expressions; i.e., ∆T E(x) is the node indexed by T , where T is the
list of transitions that lead from the root to the node.

x − y
���

HHH
1 − x
���

HHH

−z2 − z
HHH

−1 −z
HHH

2z
HHH

−1 −2

x − y
���

HHH
1 − x
���

HHH

−z2 − z
HHH

−1 −z 2z
HHH

−2

(a) (b)

Fig. 2. (a) Finite difference tree for chase of x−y with respect to {τ1, τ2}. (b) Taylored
finite difference tree.

Example 3. The FDT of x−y with respect to {τ1, τ2} is shown in Figure 2(a). 0-
nodes are not shown. The left node labeled with −1 is indexed (τ1, τ1), reflecting
that it is the result of twice taking the finite difference with respect to τ1.

The finite FDT t of an expression E(x) succinctly describes the evolution
of E(x). Given computation π = τi0τi1τi2 . . . with initial values x0, t has initial
value t0. Its subsequent values are found by applying each transition in turn,
where an application of a transition τi to t increases each node by the value
of its τi child (simultaneously, or starting from the root). The value of E(x)
depends not only on the number of times each transition is taken, but also on
the order that transitions are taken.

Example 4. Suppose x, y, and z of chase have initial values x0, y0, and z0,
respectively. After taking transition τ1, the root node of Figure 2(a) has value
x0 − y0 + 1− x0 = 1− y0, node (τ1) has value −x0, and the other nodes remain
unchanged. After then taking transition τ2, the root and (τ1) nodes have values
1−y0−z2

0−z0 and −x0−z0, respectively. The other nodes are similarly updated.

Note that an expression may not have a finite FDT with respect to some sets
of transitions. Such cases arise when the transitions have exponential behavior
(e.g., x := 2x); conversely, finite cases arise when transitions have qualitatively
polynomial behavior. Intuitively, the height of a finite FDT parallels the degree
(i.e., linear, quadratic, etc.) of the polynomial behavior. In this paper, we ad-
dress only the finite case — expressions in loops that evolve with qualitatively
polynomial behavior.

To facilitate the analysis we define Taylor FDTs and partial Taylor FDTs,
which eliminate the dependence on the order in which the transitions are taken.
We then show how every finite FDT can be conservatively approximated by a
partial Taylor FDT.

Definition 4 (Critical Leaves) The set of critical leaves ∆T E(x) of a finite
FDT are those nodes such that for all permutations σ, ∆σ(T)E(x) has value 0
or is a leaf, and for at least one permutation σ, ∆σ(T)E(x) is a leaf.

Definition 5 (Taylor FDT and Partial Taylor FDT) A finite FDT of E(x)
is a Taylor FDT if for each sequence of transitions T and every permutation σ

of T , ∆T E(x) = ∆σ(T)E(x). That is, all nth order finite differences sharing
the same multiset of transitions have the same value. A finite FDT of E(x)
is a partial Taylor FDT if for each critical leaf ∆T E(x) and permutation σ,
∆T E(x) = ∆σ(T)E(x).

Even if an FDT is not a Taylor or partial Taylor FDT, it is associated with a
partial Taylor FDT.

Definition 6 (Taylored FDT) Given finite FDT t of E(x), the positive Tay-

lored FDT t+ is a partial Taylor FDT. Each critical leaf ∆T E(x) of t is given
value maxσ ∆σ(T)E(x) in t+; the rest of t+ is identical to t. The negative

Taylored FDT t− is similar, except that each critical leaf’s value is given by
minσ ∆σ(T)E(x).

The definition of a positive Taylored FDT t+ implies that the value of a node in
t+ is at least that of its counterpart in t. The opposite relation holds between t−

and t. Consequently, given a computation π = τi0τi1τi2 . . ., t− ≤ t ≤ t+ always
holds, where ≤ expresses nodewise comparison, and thus E(x)− ≤ E(x) ≤
E(x)+.

Example 5. The Taylored FDT of x is shown in Figure 2(b). Node (τ1, τ2, τ2)
becomes 0 because

max{∆1,2,2(x − y), ∆2,1,2(x − y), ∆2,2,1(x − y)} = max{−1, 0, 0} = 0.

For conceptual clarity, we extend the definition of a Taylored FDT so that
the result is a Taylor FDT; however, the extension can only be computed with
respect to the initial values of a computation.

Definition 7 (Fully Taylored FDT) Given finite FDT t of E(x) and initial
value x0, the positive fully Taylored FDT t+f is a Taylor FDT. Each node n at

index T in t+f has value maxσ(∆σ(T)E(x)[x 7→ x0]). The negative Taylored FDT

t−f is similar, except that each leaf’s value is given by minσ(∆σ(T)E(x)[x 7→ x0]).

We note that for a given initial state and computation π, always t−f ≤ t− ≤

t ≤ t+ ≤ t+f . Because the negative (fully) Taylored FDT of an expression is
equivalent to the positive (fully) Taylored FDT of the negated expression, we
will only consider the positive form henceforth and drop the qualifier “positive.”

A fully Taylored FDT has the property that for any multiset of transitions
T , all finite difference nodes ∆σ(T)E(x) have the same value. Consequently,
the FDT may be analyzed in a way parallel to the analysis of polynomials of
multiple variables that vary continuously with time. Specifically, we look at the
Taylor expansion around “time” 0 — the beginning of the computation. Since
the behavior is polynomial, the Taylor expansion is exact.

Consider, for a moment, a fully Taylored FDT as expressing derivatives of
E(x) with respect to time. Then given the initial value of the computation, the
Taylor series expansion is simply given by the FDT itself; i.e.,

∑

∆T E(x)∈t

∏

τ∈T xτ

|T |!
∆T E(x)[x 7→ x0],

viewing the T s as lists or multisets. In the discrete context, the expansion is
slightly different; however, the dominant terms are the same for the continuous
and discrete expansions. Moreover, the coefficients of the dominant terms are
those of the critical leaves, which are either constants or constant expressions.
In some cases, constant expressions may be soundly approximated by constants,
taking care that if a constant expression can possibly be 0, other terms in the ex-
pansion dominate. Then for a partial Taylor FDT, the dominant terms comprise
the dominant Taylor expression.

Definition 8 (Dominant Taylor Expression) Given finite partial Taylor
FDT t, its dominant Taylor expression is

∑

∆T E(x)∈critical leaves(t)

∏

τ∈T xτ

|T |!
∆T E(x),

where one variable xτ is introduced per transition τ , representing the number of
times the transition has been taken.

while x ≥ 0 do
τ1 : (x, y, z) := (x + z, y + 1, z − 2)

or
τ2 : (x, y) := (x + y, y − 2)

od

x
����

PPPP
z

���
HHH

y
���

HHH
−2 1 1 −2

(a) (b)

Fig. 3. (a) MPP interaction. (b) Taylored FDT.

Example 6. For chase, the dominant Taylor expression of the Taylored FDT
for the expression x − y is

−1
x2

1

2!
− 2

x3
2

3!
=

−x2
1

2
−

x3
2

3
,

where x1 and x2 express the number of times that transitions τ1 and τ2 are
taken, respectively. Conceptually, we may consider a new MPP in which the
nonnegativity of the dominant Taylor expression is the guard, xi are the vari-
ables, and each transition τi in the original MPP corresponds to a transition
xi := xi + 1 in the new MPP. Clearly, the value of the new guard at any point
in a computation depends only on the number of times each transition has been
taken.

Example 7. Consider MPP interaction in Figure 3(a) and the Taylored FDT
for x with respect to {τ1, τ2} in Figure 3(b). The dominant Taylor expression of
the Taylored FDT for the expression x is

−2 ·
1

2!
x1x1 +

1

2!
x1x2 +

1

2!
x2x1 − 2 ·

1

2!
x2x2 = −x2

1 + x1x2 − x2
2.

Note the nonnegative term x1x2, indicating the adverse interaction of τ1 and τ2.

Combining the result t−f ≤ t− ≤ t ≤ t+ ≤ t+f with the dominant Taylor
expression admits analysis of the evolution of E(x). In the next section, we show
how to use the dominant Taylor expression of t+ to discover if E(x) eventually
decreases beyond any bound on all computations, which leads naturally into
proofs of termination.

4 FDTs and Termination

In the last section, we developed a theory of finite differences for transition sys-
tems involving polynomial expressions and assignments. The conclusion hinted
at the intuition for a termination analysis. If the dominant Taylor expression of
the Taylored FDT of E(x) with respect to the transitions T decreases without
bound on all computations then, first, E(x)+f from the fully Taylored FDT must

decrease without bound so, second, as E(x) ≤ E(x)+ ≤ E(x)+f , E(x) must also
decrease without bound. If continuation of the loop depends on E(x) {≥, >} 0,
then the loop must terminate on all input. In this section, we formalize this
description and analyze several conditions on a MPP guard’s FDTs that ensure
termination.

4.1 Single Loop Condition

For the case of one loop condition P (x) {≥, >} 0, we consider the FDT of P (x)
with respect to the loop’s assignment transitions T .

Proposition 1. (Taylor Condition) Suppose that for each nonempty T ′ ⊆ T ,

1. the FDT t of P (x) with respect to T ′ is finite;

2. the dominant Taylor expression of the Taylored FDT t+ decreases without

bound as the length of the computation increases.

Then the loop terminates on all input.

Proof. Each subset T ′ represents a possible set of transitions that are taken in-
finitely often. Consider one such set. Suppose the dominant Taylor expression
of t+ with respect to T ′ decreases without bound as the length of the computa-
tion increases. For all initial values, the dominant Taylor expression dominates
the Taylor expansion of the root of the fully Taylored FDT; therefore, P (x)+

f

decreases without bound. But P (x)+f ≥ P (x)+ ≥ P (x), so P (x) also decreases
without bound. Since this conclusion holds for all T ′, the loop must terminate.

Since the FDTs we consider have finite depth, if a dominant Taylor expression
eventually only decreases, then it eventually decreases without bound. We refer
to polynomials that satisfy the assumption of the proposition as decreasing with
respect to T .

Example 8. For chase, the dominant Taylor expressions for x with respect to
{τ1}, {τ2}, and {τ1, τ2} are the following, respectively:

−x2
1

2
,

−x3
2

3
, and

−x2
1

2
−

x3
2

3
.

The last expression was calculated in Example 6. All three expressions clearly
decrease without bound as the length of the computation increases. Thus, chase

terminates on all input.

The following example introduces a technique for showing that a more com-
plicated dominant Taylor expression is decreasing. Changing to polar coordinates
allows the length of a computation to appear explicitly in the dominant Taylor
expression.

Example 9. Recall that the dominant Taylor expression for x with respect to
{τ1, τ2} in interaction is −x2

1 + x1x2 − x2
2. Call the expression

√

x2
1 + x2

2 the
absolute length of a computation (in which both transitions are taken infinitely
often). Since x1 and x2 express the number of times τ1 and τ2 have been taken,
the absolute length is initially 0 and grows with each iteration. If the dominant
Taylor expression decreases without bound as the absolute length of the com-
putation increases, then the assumption of the Taylor condition is satisfied for
each of τ1 and τ2 occurring infinitely often.

Let x1 = r cos θ and x2 = r sin θ. r corresponds to the absolute length, while
θ ∈ [0, π

2] expresses the ratio of x2 to x1. Then after a change of variables,

−x2
1 + x1x2 − x2

2 = −r2 cos2 θ + r2 cos θ sin θ − r2 sin2 θ = r2(cos θ sin θ − 1).

Call this expression Q(r, θ). Differentiating, we find

∂Q

∂r
= 2r(cos θ sin θ − 1) and

∂2Q

∂r2
= 2(cos θ sin θ − 1).

The relevant domain of θ is [0, π
2], over which the maximum of ∂2Q

∂r2 is −1, oc-
curring at θ = π

4 . Therefore, independent of θ, as r increases, Q(r, θ) eventually
decreases without bound; therefore, the dominant Taylor expression also even-
tually decreases without bound.

Finally, considering the case where only τ1 (τ2) is taken after a certain point,
we note that the dominant Taylor expression is −x2

1 (−x2
2), which decreases

without bound. Thus, interaction terminates on all input.

We can apply the trick of using the absolute length and changing to polar co-
ordinates in general, via the usual extension of polar coordinates to higher di-
mensions. For m transitions and expression Q(r, θ1, . . . , θm−1), we check if ∂nQ

∂rn

is everywhere at most some negative constant over θi ∈ [0, π
2], i ∈ [1..m − 1],

where ∂nQ
∂rn is the first derivative with respect to r that is constant with respect

to r.
In many cases, a weaker condition on the structure of the single FDT with

respect to all transitions T is sufficient for proving termination, precluding an
expensive analysis of the dominant Taylor expression for each subset of transi-
tions. The condition follows from the Taylor condition, although it is intuitive
by itself.

Proposition 2. (Standard Condition) If every leaf of the FDT t of P (x)
with respect to T is negative, and the root of t has |T | children, then the loop

terminates on all input.

Example 10. The Taylored FDT for chase in Figure 2(b) meets this condition,
proving termination, while the Taylored FDT for interaction in Figure 3(b)
does not.

4.2 General Loop Condition

Consider now the loop condition
∧

j Pj(x) {≥, >} 0. Clearly, one simple condi-
tion is that at least one conjunct’s FDT decreases without bounds; however, a
stronger condition based on a lexical ordering is possible. The following definition
will be useful for specifying the condition.

Definition 9 (Neutral Transitions) A set of transitions Tn ⊆ T is neutral

toward an expression E(x) decreasing with respect to transitions T \Tn if E(x)
is decreasing with respect to T , except possibly when only transitions in Tn are
taken infinitely often.

Checking if a set of transitions is neutral merely requires excluding certain sub-
sets of transitions (those that contain only transitions that need only be neutral)
when analyzing termination. For the standard condition, if transition τi is neu-
tral, the root need not have a τi child.

while x ≥ 0 ∧ z3 ≥ y do
τ1 : (x, y) := (x − 1, y − 1)

or
τ2 : (y, z) := (y − 1, z + y)

od

Fig. 4. Program conjunct.

Example 11. Consider program conjunct in Figure 4. The FDT of x with re-
spect to {τ1, τ2} is shown in Figure 5(a). Transition {τ2} is neutral toward x,
which decreases with respect to {τ1}. Its dominant Taylor expression is −x1,
which decreases without bound unless τ1 is not taken after a certain iteration,
regardless of how frequently τ2 is taken.

Proposition 3. (Conjunction Condition) Consider the loop with transitions

T , a conjunction of n loop conditions Pj(x) {≥, >} 0, and a map µ : T 7→ [1..n]
mapping transitions to conjuncts. Then the loop terminates on all input if for

each j, the set {τ | µ(τ) > j} is neutral toward Pj(x), which decreases with

respect to {τ | µ(τ) = j}.

Proof. Suppose the assumption holds, yet the computation σ is nonterminating.
Let T∞ be the set of transitions occurring infinitely often and Tmin = {τ ∈
T∞ | µ(τ) = minτ ′∈T∞

µ(τ ′)} be the set of T∞-transitions mapping to the loop
condition with the lowest index, j. Following the assumption, Pj(x) is decreasing
with respect to Tmin, while T∞\Tmin is neutral toward Pj(x). Thus, Pj(x) is
decreasing with respect to T∞, and Pj(x) {≥, >} 0 is violated in a finite number
of steps, a contradiction.

For the most general loop condition
∨

i

∧

j Pij(x) {≥, >} 0, each disjunct
must satisfy the conjunction condition. Of course, either the Taylor condition
or the standard condition may be used to determine whether an expression is
decreasing with respect to a certain set of transitions or if a set of transitions is
neutral toward an expression.

x

��
−1

z3 − y
����

PPPP
1 1 − z3 + (y + z)3

����
PPPP

(y + z − 1)3 − (y + z)3 z3 − 2(y + z)3 + (2y + z − 1)3

...
. . .

−90

(a) (b)

Fig. 5. FDTs of (a) x and (b) z3 − y with respect to the transitions of program
conjunct.

Example 12. Consider program conjunct with index order P1(x, y, z) = x,
P2(x, y, z) = z3 − y, and map µ such that µ(τ1) = 1, µ(τ2) = 2. τ2 is neutral
toward x, while τ1 is not neutral toward z3 − y, as suggested by the FDT for
z3−y in Figure 5(b). Nonetheless, the conjunction condition holds, so conjunct

terminates on all input.
Specifically, for P1(x, y, z) = x, we need only consider the subsets {τ1, τ2}

and {τ1}, each of which result in the decreasing dominant Taylor expression
−x1. For P2(x, y, z) = z3−y, only the subset {τ2} must be considered, for which
the dominant Taylor expression − 90

6! x
6
2 is decreasing.

Using the standard condition, we merely note that the FDT for x with respect
to {τ1, τ2} shows that {τ2} is neutral toward x (no τ2 child of the root), while x

decreases with respect to {τ1} (−1 leaf). Further, the rightmost branch in Figure
5(b), which is the FDT of z3−y with respect to {τ2}, terminates with −90, also
satisfying the standard condition.

4.3 Guarded Commands

Instead of an MPP, consider a set of polynomial guarded commands C = {G1 →
S1, . . . , Gn → Sn}, for which the Gi are conjunctions of polynomial inequations
and the Si are polynomial assignments. An initial condition θ may be associated
with the set of guarded commands.

Proposition 4. (Guarded Commands Condition) Consider the set of

guarded commands C = {G1 → S1, . . . , Gn → Sn}. C always terminates if there

exists a permutation σ such that for each i, there exists a conjunct (e {≥, >} 0) of

Gi such that e is decreasing with respect to {Si} and to which {Sj | σ(j) > σ(i)}
is neutral.

Briefly, the first guarded command given by σ can only be executed a finite
number of times before its guard is violated; as the remaining commands are
neutral toward G1, it is henceforth violated. The same reasoning applies to
the second command once the first command is disabled. The disabling of the
remaining commands follows by induction.

The language of sets of polynomial guarded commands is more expressive
than the language of MPPs — indeed, our practical experience (see Section 5)
supports the guarded command abstraction as the more useful. However, the
relationship between the general loop condition of Section 4.2 and Proposition
4 is incomparable. Given an MPP and its natural translation to a set of poly-
nomial guarded commands, if Proposition 4 proves termination, then applying
Proposition 3 to each disjunct of the MPP’s guard also proves termination (ex-
tract the lexicographic orders for the latter from the single lexicographic order
of the former). However, if, for example, the MPP has two disjuncts requiring
opposite orders for Proposition 3, then no interpolation produces a suitable or-
der for Proposition 4. Of course, Proposition 4 is more applicable, in some sense,
because of the extra expressiveness of the guarded command abstraction. Al-
lowing disjunction in the guards of the guarded commands makes the resulting
guarded command abstraction and the natural termination condition strictly
more powerful, but we have not found this additional power useful.

5 Experimental Results

To test the applicability of our termination analysis, we implemented a C loop
abstracter in cil [8] and the termination analysis in Mathematica [15]. The pur-
pose of the loop abstracter is to extract a set of polynomial guarded commands
from a C loop with arbitrary control flow, including embedded loops. The anal-
ysis then applies to the extracted guarded commands a version of Proposition 4
that exploits the standard condition. The implementation is weaker than Propo-
sition 4, in that it requires for each i that all other assignments Sj 6= Si are
neutral toward the expression e from Gi, rather than allowing a lexicographic
ordering. The analysis is sound up to alias analysis, modification of variables
by called functions, and unsigned casts. We chose to ignore these factors in our
experimentation, as they have no bearing on the scalability of the actual ter-
mination analysis. Handling unsigned casts, for example, would require proving
invariants about signed integers; a complete program analysis package would
contain this functionality.

Given a loop, the abstraction first creates a number abstraction by slicing
on the number typed variables that receive values within the loop from poly-
nomial expressions. Division is allowed for floats, but not for integers; further,
an integer cast of an expression with a floating point value excludes the expres-
sion from consideration. Nondeterministic choice replaces disallowed expressions.

Next, the abstraction constructs all possible top-level guarded paths; variables
that are modified by embedded loops are set nondeterministically (a heavy-
handed version of summarizing embedded loops). The construction of a guarded
path proceeds by the usual composition of assignments, so that the final guarded
path consists of a conjunction of guard expressions and a single concurrent up-
date to a set of variables. The result is a set of guarded commands, as described
in Section 4.3. Our Mathematica implementation of the standard condition then
analyzes this set, failing if an FDT reaches a predetermined maximum depth
during construction.

while(i < a.n || j < b.n) {

if (i >= a.n)

c.e[c.n++] = b.e[j++];

else if (j >= b.n)

c.e[c.n++] = a.e[i++];

else if (a.e[i] <= b.e[j])

c.e[c.n++] = a.e[i++];

else

c.e[c.n++] = b.e[j++];

}

j < b.n ∧ i < a.n → (c.n, j) := (c.n + 1, j + 1)
j < b.n ∧ i < a.n → (c.n, i) := (c.n + 1, i + 1)
j ≥ b.n ∧ i < a.n → (c.n, i) := (c.n + 1, i + 1)
j < b.n ∧ i ≥ a.n → (c.n, j) := (c.n + 1, j + 1)

(a) (b)

Fig. 6. (a) Imperative loop in C and (b) the corresponding set of polynomial guarded
commands.

Example 13. The loop in Figure 6(a) merges two lists. The abstracted set of
guarded commands is shown in Figure 6(b); four guarded commands with false
guards were pruned. The analysis proves that the loop terminates.

5.1 Empirical Results

We applied the analysis to several open-source projects from Netlib [9] and
Sourceforge [12]. The results of the analyses are summarized in Table 1. These
programs span a range of applications: for example, f2c converts FORTRAN
source to C source; spin is a model checker; and meschach is a package of
numerical algorithms.

5.2 Analysis

A glance over the loops in the programs suggests that when the number ab-
straction of a C loop is proved terminating, the reason is probably because of
a counter. In some sense, this observation is disappointing: of what value is
our analysis when the reasons are trivial? Three points come to mind. First,
applying any analysis at all is useful. Programmers regularly write loops with

Name LOC # L # A # P % P/A % P/L Time (s)

small1 310 8 6 4 66 50 4
vector 361 13 13 12 92 92 3
serv 457 9 6 5 83 55 4
dcg 1K 55 53 53 100 96 4
bcc 4K 70 18 18 100 25 6
sarg 7K 122 26 25 96 20 102
spin 19K 652 132 119 90 18 29
meschach 28K 896 803 770 95 85 40
f2c 30K 434 114 96 84 22 41
ffmpeg/libavformat 33K 453 270 214 79 47 45
gnuplot 50K 825 329 298 90 36 106
gaim 57K 605 60 52 86 8 97
ffmpeg/libavcodec 75K 2216 1945 1856 95 83 112

Table 1. Results of analysis. Legend: LOC: lines of code of files successfully parsed

and containing loops, as measured by wc; # L: total number of analyzed loops; # A:
number of loops successfully abstracted; # P: number of (abstracted) loops proved
terminating; % P/A: percentage of abstracted loops proved terminating; % P/L:
percentage of total loops proved terminating; Time: total time in seconds required to
analyze the program. small1 requires a maximum FDT height of 4; data for all others
are for a maximum height of 1.

complicated control structure that span several editor pages. Verifying manu-
ally that all paths increment a counter (and the right counter) is thus tedious
and ineffective. An automated analysis filters out correct cases, while remaining
loops warrant a second look.

Second, our analysis scales well to triviality: the FDTs are shallow (of depth
one for the counter case), thus requiring an insignificant amount of time. Com-
pare the minimal computation required for the standard condition on a shallow
FDT to the manipulation of polyhedra [2, 3], the solving of linear programs [11],
or the analysis of matrix-like transitions [13] (assuming that the latter two ap-
proaches can scale to multiple paths). However, the extra power of the nonlinear
analysis is available when needed.

Finally, compared to a naive syntactic analysis, our approach has two advan-
tages. First, a naive syntactic analysis would be sensitive to the presentation of
the loop. For example, a syntactic analysis may well stumble on a while loop
that terminates using break or goto statements. Our abstraction and analy-
sis approach not only is insensitive to such presentations of loops, it may also
identify other loop guards than the one explicitly provided by the for or while
statement. Second, even trivial termination behavior is not always completely
trivial. For example, the meschach source contains loops with terminating be-
havior similar to that in Figure 6. Our analysis easily handles such cases. Ad-
ditionally, despite the prototype-related overheads of our implementation, the
timing results indicate acceptable performance.

Reasons for failed proofs are numerous. A failure to abstract a nontrivial
guarded set may indicate nontermination (especially if, say, all transitions but
one increment a counter), but usually arises because the termination behavior is
not number-related. Even “successful” abstractions may present only incidental
information; termination may rest on other criteria. In several cases, we noted
that the lack of an initial condition weakens the abstraction. Other cases played
on the weaknesses of the analysis, including the following: (1) expressions evolve
with exponential behavior, resulting in infinite FDTs; (2) variables are modified
by inner loops, often in a way that trivially suggests an inequality relation.

The number abstraction may be extended beyond pure numbers. Many loops
are based on iterating through collection data structures, such as linked lists and
heaps. A sophisticated analysis tool would allow the user to input information
about such data structures, allowing a number abstraction of iteration. The
resulting termination analysis would be sound relative to the correctness of the
data structure. Widely used implementations of data structures, such as those
provided by the STL, are candidates for automatic analysis.

6 Conclusion

Multipath polynomial programs and polynomial guarded commands provide an
expressive language for abstracting real code. Although termination for this class
of loops is not even semi-decidable, we provide a sound analysis that is effective
in practice. This analysis is notable for two reasons. First, it is applicable to
polynomial, rather than just linear, expressions and assignments. Second, our
analysis naturally scales to the difficulty of the problem, which enables our pro-
totype implementation to analyze tens of thousands of lines of C in seconds.

The analysis can be strengthened in several ways. First, head and tail loops,
or embedded loops that precede or follow, respectively, all assignments in the
top-level loop, may be abstracted to form a set of paths to include as neutral

top level paths. Second, analysis of the code preceding loop entry, or even in-
variant generation, can supply initial conditions. Third, embedded loops that
modify some variables may sometimes be abstracted as transition relations with
inequations. Extending both the abstraction and the analysis to handle such
inequations would increase our method’s applicability. Fourth, the analysis may
be extended to handle FDTs with infinite or large finite height by arbitrar-
ily curtailing FDT construction and using invariant analysis to provide useful
bounds on the resulting leaves. Fifth, the abstraction may be extended to iterat-
ing over data structures. Finally, we plan to employ the analysis within a larger
C analysis that exploits alias information, thus providing a path toward a sound
implementation.

Acknowledgments We thank the reviewers for their insightful comments and
suggestions. Additionally, we gratefully acknowledge the contribution of George
Necula and the other developers of cil to the software analysis community.

References

1. Cohen, J. Computer-assisted microanalysis of programs. Comm. ACM 25, 10
(1982).

2. Colón, M., and Sipma, H. Synthesis of linear ranking functions. In TACAS

(2001).
3. Colón, M., and Sipma, H. Practical methods for proving program termination.

In CAV (2002).
4. H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. In CAV

(1996).
5. Katz, S., and Manna, Z. Logical analysis of programs. Comm. ACM 19, 4

(1976).
6. Lee, C. S., Jones, N. D., and Ben-Amram, A. M. The size-change principle

for program termination. In POPL (2001).
7. Manna, Z., Browne, A., Sipma, H., and Uribe, T. E. Visual abstractions for

temporal verification. In Algebraic Methodology and Software Technology (1998).
8. Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. CIL: Intermediate

language and tools for analysis and transformation of C programs. In Proceedings

of Conf. on Compiler Construction (2002).
9. Netlib Repository, 2004. (http://www.netlib.org).

10. Podelski, A., and Rybalchenko, A. Software model checking of liveness prop-
erties via transition invariants. Technical Report, MPI für Informatik, 2003.

11. Podelski, A., and Rybalchenko, A. A complete method for the synthesis of
linear ranking functions. In VMCAI (2004).

12. SourceForge, 2004. (http://sourceforge.net).
13. Tiwari, A. Termination of linear programs. In CAV (2004).
14. Wegbreit, B. Mechanical program analysis. Comm. ACM 18, 9 (1975).
15. Wolfram Research, Inc. Mathematica, Version 5.0. Champaign, IL, 2004.

