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I RATIONALE






There are hundreds of programming languages in active use, and many more are
being designed each year. It is therefore hard to justify the development of yet an-
other language. Nevertheless, this is what we attempt to do here. Our argument is
based on two claims:

Claim 1: The raise in importance of web services and other distributed soft-
ware is a fundamental paradigm shift in programming. It is comparable in
scale to the shift 20 years ago from character-oriented to graphical user inter-
faces.

Claim 2: That paradigm shift will provide demand for new programming lan-
guages, just as graphical user interfaces promoted the adoption of object-
oriented languages.

For the last 20 years, the most common programming model was object-oriented:
System components are objects, and computation is done by method calls. Meth-
ods themselves take object references as parameters. Remote method calls let one
extend this programming model to distributed systems. The problem of this model
is that it does not scale up very well to wide-scale networks where messages can be
delayed and components may fail. Web services address the message delay prob-
lem by increasing granularity, using method calls with larger, structured arguments,
such as XML trees. They address the failure problem by using transparent replica-
tion and avoiding server state. Conceptually, they are tree transformers that con-
sume incoming message documents and produce outgoing ones.

Why should this have an effect on programming languages? There are at least two
reasons: First, today’s object-oriented languages are not very good at analyzing and
transforming XML trees. Because such trees usually contain data but no methods,
they have to be decomposed and constructed from the “outside”, that is from code
which is external to the tree definition itself. In an object-oriented language, the
ways of doing so are limited. The most common solution [W3Ca] is to represent
trees in a generic way, where all tree nodes are values of a common type. This
makes it easy to write generic traversal functions, but forces applications to operate
on a very low conceptual level, which often loses important semantic distinctions
present in the XML data. More semantic precision is obtained if different internal
types model different kinds of nodes. But then tree decompositions require the use
of run-time type tests and type casts to adapt the treatment to the kind of node en-
countered. Such type tests and type casts are generally not considered good object-
oriented style. They are rarely efficient, nor easy to use.

By contrast, tree transformation is the natural domain of functional languages.
Their algebraic data types, pattern matching and higher-order functions make these
languages ideal for the task. It's no wonder, then, that specialized languages for
transforming XML data such as XSLT are functional.

Another reason why functional language constructs are attractive for web-services
is that mutable state is problematic in this setting. Components with mutable state



are harder to replicate or to restore after a failure. Data with mutable state is harder
to cache than immutable data. Functional language constructs make it relatively
easy to construct components without mutable state.

Many web services are constructed by combining different languages. For instance,
a service might use XSLT to handle document transformation, XQuery for database
access, and Java for the “business logic”. The downside of this approach is that the
necessary amount of cross-language glue can make applications cumbersome to
write, verify, and maintain. A particular problem is that cross-language interfaces
are usually not statically typed. Hence, the benefits of a static type system are miss-
ing where they are needed most — at the join points of components written in differ-
ent paradigms.

Conceivably, the glue problem could be addressed by a “multi-paradigm” language
that would express object-oriented, concurrent, as well as functional aspects of
an application. But one needs to be careful not to simply replace cross-language
glue by awkward interfaces between different paradigms within the language it-
self. Ideally, one would hope for a fusion which unifies concepts found in different
paradigms instead of an agglutination, which merely includes them side by side.
This fusion is what we try to achieve with Scala ®.

Scala is both an object-oriented and functional language. It is a pure object-
oriented language in the sense that every value is an object. Types and behavior
of objects are described by classes. Classes can be composed using mixin compo-
sition. Scala is designed to work seamlessly with mainstream object-oriented lan-
guages, in particular Java and C#.

Scalais also a functional language in the sense that every function is a value. Nesting
of function definitions and higher-order functions are naturally supported. Scala
also supports a general notion of pattern matching which can model the alge-
braic types used in many functional languages. Furthermore, this notion of pattern
matching naturally extends to the processing of XML data.

The design of Scala is driven by the desire to unify object-oriented and functional
elements. Here are three examples how this is achieved:

* Since every function is a value and every value is an object, it follows that
every function in Scala is an object. Indeed, there is a root class for functions
which is specialized in the Scala standard library to data structures such as
arrays and hash tables.

* Data structures in many functional languages are defined using algebraic data
types. They are decomposed using pattern matching. Object-oriented lan-
guages, on the other hand, describe data with class hierarchies. Algebraic data
types are usually closed, in that the range of alternatives of a type is fixed when
the type is defined. By contrast, class hierarchies can be extended by adding
new leaf classes. Scala adopts the object-oriented class hierarchy scheme for

IScala stands for “Scalable Language”. The term means “Stairway” in Italian



data definitions, but allows pattern matching against values coming from a
whole class hierarchy, not just values of a single type. This can express both
closed and extensible data types, and also provides a convenient way to ex-
ploit run-time type information in cases where static typing is too restrictive.

* Module systems of functional languages such as SML or Caml excel in abstrac-
tion; they allow very precise control over visibility of names and types, includ-
ing the ability to partially abstract over types. By contrast, object-oriented
languages excel in composition; they offer several composition mechanisms
lacking in module systems, including inheritance and unlimited recursion be-
tween objects and classes. Scala unifies the notions of object and module, of
module signature and interface, as well as of functor and class. This combines
the abstraction facilities of functional module systems with the composition
constructs of object-oriented languages. The unification is made possible by
means of a new type system based on path-dependent types [OCRZ03a].

There are several other languages that try to bridge the gap between the functional
and object oriented paradigms. Smalltalk[GR83], Python[vRDO03], or Ruby[Mat01]
come to mind. Unlike these languages, Scala has an advanced static type system,
which contains several innovative constructs. This aspect makes the Scala defini-
tion a bit more complicated than those of the languages above. On the other hand,
Scala enjoys the robustness, safety and scalability benefits of strong static typing.
Furthermore, Scala incorporates recent advances in type inference, so that exces-
sive type annotations in user programs can usually be avoided.

Acknowledgments. Many people have contributed to the definition and imple-
mentation of the Scala language and to parts of this book. First of all, I would like
to thank the Scala team at EPFL consisting of Philippe Altherr, Vincent Cremet, Bu-
rak Emir, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. They put a lot of effort in the Scala compiler, tools, and documen-
tation and have contributed in an essential way to the specification of the Scala
language through many observations, clever suggestions, and discussions. Mem-
bers of the team have also contributed examples in this book, as well as parts of the
specification. Phil Bagwell, Gilad Bracha, Erik Ernst, Erik Mejer, Benjamin Pierce,
Enno Runne, and Phil Wadler have given very useful feedback on the Scala design.

The documentation ows a great debt to Abelson’s and Sussman’s wonderful book
“Structure and Interpretation of Computer Programs”[ASS96]. I have adapted sev-
eral of their examples and exercises in the “Scala By Example” part of this book. Of
course, the working language has in each case been changed from Scheme to Scala.
Furthermore, the examples make use of Scala’s object-oriented constructs where
appropriate.






II SCALA BY EXAMPLE






Scala is a programming language that fuses elements from object-oriented and
functional programming. This part introduces Scala in an informal way, through
a sequence of examples.

Chapters 1 and 2 highlight some of the features that make Scala interesting. The fol-
lowing chapters introduce the language constructs of Scala in a more thorough way,
starting with simple expressions and functions, and working up through objects
and classes, lists and streams, mutable state, pattern matching to more complete
examples that show interesting programming techniques. The present informal ex-
position is complemented by the Scala Language Reference Manual which specifies
Scala in a more detailed and precise way.






Chapter 1
A First Example

As a first example, here is an implementation of Quicksort in Scala.

def sort(xs: Array[Int]) {
def swap(i: Int, j: Int) {
val t = xs(i); xs(i) = xs(j); xs(j) = t
}
def sortl(l: Int, r: Int) {
val pivot = xs((1 + r) / 2)
var i = 1; var j =r
while (i <= j) {
while (xs(i) < pivot) i +=1
while (xs(j) > pivot) j -=1

if (1 <= J) {
swap(i, Jj)
i+=1
j—=1

}

}
if (1 < j) sortl(l, j)
if (j < r) sortl(i, r)
}
sortl(0, xs.length - 1)

}

The implementation looks quite similar to what one would write in Java or C. We
use the same operators and similar control structures. There are also some minor
syntactical differences. In particular:

* Definitions start with a reserved word. Function definitions start with def,
variable definitions start with var and definitions of values (i.e. read only vari-
ables) start with val.
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* The declared type of a symbol is given after the symbol and a colon. The de-
clared type can often be omitted, because the compiler can infer it from the
context.

* Array types are written Array[T] rather than T[ ], and array selections are writ-
ten a(di) rather than a[i].

¢ Functions can be nested inside other functions. Nested functions can access
parameters and local variables of enclosing functions. For instance, the name
of the array a is visible in functions swap and sort1, and therefore need not be
passed as a parameter to them.

So far, Scala looks like a fairly conventional language with some syntactic peculiar-
ities. In fact it is possible to write programs in a conventional imperative or object-
oriented style. This is important because it is one of the things that makes it easy
to combine Scala components with components written in mainstream languages
such as Java, C# or Visual Basic.

However, it is also possible to write programs in a style which looks completely dif-
ferent. Here is Quicksort again, this time written in functional style.

def sort(xs: Array[Int]): Array[Int] =
if (xs.length <= 1) xs
else {
val pivot = xs(xs.length / 2)
Array.concat(
sort(xs filter (pivot >)),
xs filter (pivot ==),
sort(xs filter (pivot <)))

The functional program captures the essence of the quicksort algorithm in a concise
way:

* If the array is empty or consists of a single element, it is already sorted, so
return it immediately.

* If the array is not empty, pick an an element in the middle of it as a pivot.

* Partition the array into two sub-arrays containing elements that are less than,
respectively greater than the pivot element, and a third array which contains
elements equal to pivot.

« Sort the first two sub-arrays by a recursive invocation of the sort function.!

* The result is obtained by appending the three sub-arrays together.

I This is not quite what the imperative algorithm does; the latter partitions the array into two
sub-arrays containing elements less than or greater or equal to pivot.
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Both the imperative and the functional implementation have the same asymptotic
complexity — O(N log(N)) in the average case and O(N?) in the worst case. But
where the imperative implementation operates in place by modifying the argument
array, the functional implementation returns a new sorted array and leaves the ar-
gument array unchanged. The functional implementation thus requires more tran-
sient memory than the imperative one.

The functional implementation makes it look like Scala is a language that’s special-
ized for functional operations on arrays. In fact, it is not; all of the operations used in
the example are simple library methods of a sequence class Seq[T] which is part of
the standard Scala library, and which itself is implemented in Scala. Because arrays
are instances of Seq all sequence methods are available for them.

In particular, there is the method filter which takes as argument a predicate func-
tion that maps array elements to boolean values. The result of filter is an array
consisting of all the elements of the original array for which the given predicate
function is true. The filter method of an object of type Array[T] thus has the
signature

def filter(p: T => Boolean): Array[T]

Here, T => Booleanis the type of functions that take an element of type t and return
a Boolean. Functions like filter that take another function as argument or return
one as result are called higher-order functions.

Scala does not distinguish between identifiers and operator names. An identifier
can be either a sequence of letters and digits which begins with a letter, or it can be
a sequence of special characters, such as “+”, “+”, or “:”. Any identfier can be used
as an infix operator in Scala. The binary operation E op E' is always interpreted as
the method call E.op(E"). This holds also for binary infix operators which start with
a letter. Hence, the expression xs filter (pivot >) is equivalent to the method
call xs.filter(pivot >).

In the quicksort program, filter is applied three times to an anonymous function
argument. The first argument, pivot >, represents a function that takes an argu-
ment x and returns the value pivot > x. Another way to write this function which
makes the missing argument explicit is x => pivot > x. The function is anony-
mous, i.e. it is not defined with a name. The type of the x parameter is omitted
because a Scala compiler can infer it automatically from the context where the func-
tion is used. To summarize, xs.filter(pivot >) returns a list consisting of all ele-
ments of the list xs that are smaller than pivot.

Looking again in detail at the first, imperative implementation of Quicksort, we find
that many of the language constructs used in the second solution are also present,
albeit in a disguised form.

For instance, “standard” binary operators such as +, -, or < are not treated in any
special way. Like append, they are methods of their left operand. Consequently, the
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expressioni + 1lisregarded as the invocation i.+(1) of the + method of the integer
value x. Of course, a compiler is free (if it is moderately smart, even expected) to
recognize the special case of calling the + method over integer arguments and to
generate efficient inline code for it.

For efficiency and better error diagnostics the while loop is a primitive construct in
Scala. But in principle, it could have just as well been a predefined function. Here is
a possible implementation of it:

def While (p: => Boolean) (s: => Unit): Unit =
if (p) { s ; While(p)(s) }

The While function takes as first parameter a test function, which takes no parame-
ters and yields a boolean value. As second parameter it takes a command function
which also takes no parameters and yields a result of type Unit. While invokes the
command function as long as the test function yields true.

Scala’s Unit type roughly corresponds to void in Java; it is used whenever a func-
tion does not return an interesting result. In fact, because Scala is an expression-
oriented language, every function returns some result. If no explicit return expres-
sion is given, the value (), which is pronounced “unit”, is assumed. This value is
of type Unit. Unit-returning functions are also called procedures. Here’s a more
“expression-oriented” formulation of the swap function in the first implementation
of quicksort, which makes this explicit:

def swap(i: Int, j: Int): Unit = {
val t = xs(i); xs(i) = xs(j); xs(j) =t
O

}

The result value of this function is simply its last expression — a return keyword is

not necessary. Note that functions returning an explicit value always need an “=
before their body or defining expression.



Chapter 2

Programming with Actors and Mes-
sages

Here’s an example that shows an application area for which Scala is particularly well
suited. Consider the task of implementing an electronic auction service. We use
an Erlang-style actor process model to implement the participants of the auction.
Actors are objects to which messages are sent. Every actor has a “mailbox” of its in-
coming messages which is represented as a queue. It can work sequentially through
the messages in its mailbox, or search for messages matching some pattern.

For every traded item there is an auctioneer actor that publishes information about
the traded item, that accepts offers from clients and that communicates with the
seller and winning bidder to close the transaction. We present an overview of a
simple implementation here.

As a first step, we define the messages that are exchanged during an auction. There
are two abstract base classes AuctionMessage for messages from clients to the auc-
tion service, and AuctionReply for replies from the service to the clients. For both
base classes there exists a number of cases, which are defined in Figure 2.1.

For each base class, there are a number of case classes which define the format of
particular messages in the class. These messages might well be ultimately mapped
to small XML documents. We expect automatic tools to exist that convert between
XML documents and internal data structures like the ones defined above.

Figure 2.2 presents a Scala implementation of a class Auction for auction actors that
coordinate the bidding on one item. Objects of this class are created by indicating
e aseller actor which needs to be notified when the auction is over,
¢ aminimal bid,

¢ the date when the auction is to be closed.

The behavior of the actor is defined by its act method. That method repeatedly
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import scala.actors.Actor

abstract class AuctionMessage
case class Offer(bid: Int, client: Actor) extends AuctionMessage
case class Inquire(client: Actor) extends AuctionMessage

abstract class AuctionReply
case class Status(asked: Int, expire: Date) extends AuctionReply
case object BestOffer extends AuctionReply
case class BeatenOffer(maxBid: Int) extends AuctionReply
case class AuctionConcluded(seller: Actor, client: Actor)
extends AuctionReply
case object AuctionFailed extends AuctionReply
case object AuctionOver extends AuctionReply

Listing 2.1: Message Classes for an Auction Service

selects (using receiveWithin) a message and reacts to it, until the auction is closed,
which is signaled by a TIMEOUT message. Before finally stopping, it stays active for
another period determined by the timeToShutdown constant and replies to further
offers that the auction is closed.

Here are some further explanations of the constructs used in this program:

* The receiveWithin method of class Actor takes as parameters a time span
given in milliseconds and a function that processes messages in the mailbox.
The function is given by a sequence of cases that each specify a pattern and
an action to perform for messages matching the pattern. The receiveWithin
method selects the first message in the mailbox which matches one of these
patterns and applies the corresponding action to it.

* The last case of receiveWithin is guarded by a TIMEOUT pattern. If no other
messages are received in the meantime, this pattern is triggered after the time
span which is passed as argument to the enclosing receiveWithin method.
TIMEOUT is a special message, which is triggered by the Actor implementation
itself.

* Reply messages are sent wusing syntax of the form
destination ! SomeMessage. ! is used here as a binary operator with
an actor and a message as arguments. This is equivalent in Scala to the
method call destination.!(SomeMessage), i.e. the invocation of the !
method of the destination actor with the given message as parameter.

The preceding discussion gave a flavor of distributed programming in Scala. It
might seem that Scala has a rich set of language constructs that support actor pro-
cesses, message sending and receiving, programming with timeouts, etc. In fact, the
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class Auction(seller: Actor, minBid: Int, closing: Date) extends Actor
val timeToShutdown = 36000000 //msec
val bidIncrement = 10
def act() {
var maxBid = minBid - bidIncrement
var maxBidder: Actor = null
var running = true
while (running) {
receiveWithin ((closing.getTime() - new Date().getTime())) {
case Offer(bid, client) =>
if (bid >= maxBid + bidIncrement) {
if (maxBid >= minBid) maxBidder ! BeatenOffer(bid)
maxBid = bid; maxBidder = client; client ! BestOffer
} else {
client ! BeatenOffer(maxBid)
}
case Inquire(client) =>
client ! Status(maxBid, closing)
case TIMEOUT =>
if (maxBid >= minBid) {
val reply = AuctionConcluded(seller, maxBidder)
maxBidder ! reply; seller ! reply
} else {
seller ! AuctionFailed
}
receiveWithin(timeToShutdown) {
case Offer(_, client) => client ! AuctionOver
case TIMEOUT => running = false

Listing 2.2: Implementation of an Auction Service
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opposite is true. All the constructs discussed above are offered as methods in the li-
brary class Actor. That class is itself implemented in Scala, based on the underlying
thread model of the host language (e.g. Java, or .NET). The implementation of all
features of class Actor used here is given in Section 16.11.

The advantages of the library-based approach are relative simplicity of the core lan-
guage and flexibility for library designers. Because the core language need not spec-
ify details of high-level process communication, it can be kept simpler and more
general. Because the particular model of messages in a mailbox is a library module,
it can be freely modified if a different model is needed in some applications. The
approach requires however that the core language is expressive enough to provide
the necessary language abstractions in a convenient way. Scala has been designed
with this in mind; one of its major design goals was that it should be flexible enough
to act as a convenient host language for domain specific languages implemented
by library modules. For instance, the actor communication constructs presented
above can be regarded as one such domain specific language, which conceptually
extends the Scala core.



Chapter 3
Expressions and Simple Functions

The previous examples gave an impression of what can be done with Scala. We now
introduce its constructs one by one in a more systematic fashion. We start with the
smallest level, expressions and functions.

3.1 Expressions And Simple Functions

A Scala system comes with an interpreter which can be seen as a fancy calculator.
A user interacts with the calculator by typing in expressions. The calculator returns
the evaluation results and their types. For example:

scala> 87 + 145
unnamedO: Int = 232

scala> 5 + 2 * 3
unnamedl: Int = 11

scala> "hello" + " world!"
unnamed2: java.lang.String = hello world!

It is also possible to name a sub-expression and use the name instead of the expres-
sion afterwards:

scala> def scale = 5
scale: Int

scala> 7 * scale
unnamed3: Int = 35

scala> def pi = 3.141592653589793
pi: Double
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scala> def radius = 10
radius: Int

scala> 2 * pi * radius
unnamed4: Double = 62.83185307179586

Definitions start with the reserved word def; they introduce a name which stands
for the expression following the = sign. The interpreter will answer with the intro-
duced name and its type.

Executing a definition such as def x = e will not evaluate the expression e. In-
stead e is evaluated whenever x is used. Alternatively, Scala offers a value defini-
tionval x = e, which does evaluate the right-hand-side e as part of the evaluation
of the definition. If x is then used subsequently, it is immediately replaced by the
pre-computed value of e, so that the expression need not be evaluated again.

How are expressions evaluated? An expression consisting of operators and
operands is evaluated by repeatedly applying the following simplification steps.

* pick the left-most operation
 evaluate its operands

 apply the operator to the operand values.

A name defined by def is evaluated by replacing the name by the (unevaluated)
definition’s right hand side. A name defined by val is evaluated by replacing the
name by the value of the definitions’s right-hand side. The evaluation process stops
once we have reached a value. A value is some data item such as a string, a number,
an array, or a list.

Example 3.1.1 Here is an evaluation of an arithmetic expression.

(2 * pi) * radius

(2 * 3.141592653589793) * radius
6.283185307179586 = radius
6.283185307179586 * 10
62.83185307179586

Ll

The process of stepwise simplification of expressions to values is called reduction.

3.2 Parameters

Using def, one can also define functions with parameters. For example:
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scala> def square(x: Double) = x * x
square: (Double)Double

scala> square(2)
unnamedO: Double = 4.0

scala> square(5 + 3)
unnamedl: Double = 64.0

scala> square(square(4))
unnamed2: Double = 256.0

scala> def sumOfSquares(x: Double, y: Double) = square(x) + square(y)
sumOfSquares: (Double,Double)Double

scala> sumOfSquares(3, 2 + 2)
unnamed3: Double = 25.0

Function parameters follow the function name and are always enclosed in paren-
theses. Every parameter comes with a type, which is indicated following the param-
eter name and a colon. At the present time, we only need basic numeric types such
as the type scala.Double of double precision numbers. Scala defines type aliases for
some standard types, so we can write numeric types as in Java. For instance double
is a type alias of scala.Double and int is a type alias for scala.Int.

Functions with parameters are evaluated analogously to operators in expressions.
First, the arguments of the function are evaluated (in left-to-right order). Then, the
function application is replaced by the function’s right hand side, and at the same
time all formal parameters of the function are replaced by their corresponding ac-
tual arguments.

Example 3.2.1

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 * 3 + square(4)

9 + square(4)
9+4 « 4

9 + 16

25

I A A A A

The example shows that the interpreter reduces function arguments to values be-
fore rewriting the function application. One could instead have chosen to apply the
function to unreduced arguments. This would have yielded the following reduction
sequence:
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sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 + square(2+2)
square(2+2)

(2+42) * (2+2)

4 % (2+2)

4 % 4

16

*

© © © O O W
+ + o+ 4+ +

Ll bbb
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The second evaluation order is known as call-by-name, whereas the first one is
known as call-by-value. For expressions that use only pure functions and that there-
fore can be reduced with the substitution model, both schemes yield the same final
values.

Call-by-value has the advantage that it avoids repeated evaluation of arguments.
Call-by-name has the advantage that it avoids evaluation of arguments when the
parameter is not used at all by the function. Call-by-value is usually more efficient
than call-by-name, but a call-by-value evaluation might loop where a call-by-name
evaluation would terminate. Consider:

scala> def loop: Int = loop
loop: Int

scala> def first(x: Int, y: Int) = x
first: (Int,Int)Int

Then first(1, loop) reduces with call-by-name to 1, whereas the same term re-
duces with call-by-value repeatedly to itself, hence evaluation does not terminate.

first(1l, loop)
— first(1, loop)
— first(1, loop)

—

Scala uses call-by-value by default, but it switches to call-by-name evaluation if the
parameter type is preceded by =>.

Example 3.2.2

scala> def constOne(x: Int, y: => Int) =1
constOne: (Int,=> Int)Int

scala> constOne(1l, loop)
unnamedO: Int = 1

scala> constOne(loop, 2) // gives an infinite loop.
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AC // stops execution with Ctrl-C

3.3 Conditional Expressions

Scala’s if-else lets one choose between two alternatives. Its syntax is like Java’s
if-else. But where Java’s if-else can be used only as an alternative of state-
ments, Scala allows the same syntax to choose between two expressions. That’s

why Scala’s if-else serves also as a substitute for Java’s conditional expression
?

Example 3.3.1

scala> def abs(x: Double) = if (x >= 0) x else -x
abs: (Double)Double

Scala’s boolean expressions are similar to Java’s; they are formed from the constants
true and false, comparison operators, boolean negation ! and the boolean opera-
tors &% and | |.

3.4 Example: Square Roots by Newton’s Method

We now illustrate the language elements introduced so far in the construction of a
more interesting program. The task is to write a function

def sqrt(x: Double): Double = ...

which computes the square root of x.

A common way to compute square roots is by Newton’s method of successive ap-
proximations. One starts with an initial guess y (say: y = 1). One then repeatedly
improves the current guess y by taking the average of y and x/y. As an example, the
next three columns indicate the guess y, the quotient x/y, and their average for the
first approximations of v/2.

1 2/1 =2 1.5

1.5 2/1.5 = 1.3333 1.4167
1.4167 2/1.4167 = 1.4118 1.4142
1.4142

y xly (y+x/y)l2

One can implement this algorithm in Scala by a set of small functions, which each
represent one of the elements of the algorithm.

We first define a function for iterating from a guess to the result:
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def sqrtIter(guess: Double, x: Double): Double =
if (isGoodEnough(guess, X)) guess
else sqrtIter(improve(guess, X), X)

Note that sqrtIter calls itself recursively. Loops in imperative programs can always
be modeled by recursion in functional programs.

Note also that the definition of sqrtIter contains a return type, which follows the
parameter section. Such return types are mandatory for recursive functions. For a
non-recursive function, the return type is optional; if it is missing the type checker
will compute it from the type of the function’s right-hand side. However, even for
non-recursive functions it is often a good idea to include a return type for better
documentation.

As a second step, we define the two functions called by sqrtIter: a function to
improve the guess and a termination test isGoodEnough. Here is their definition.

def improve(guess: Double, x: Double) =
(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =
abs(square(guess) - x) < 0.001

Finally, the sqrt function itself is defined by an application of sqrtIter.

def sqrt(x: Double) = sqrtIter(1.0, x)

Exercise 3.4.1 The isGoodEnough test is not very precise for small numbers and
might lead to non-termination for very large ones (why?). Design a different ver-
sion of isGoodEnough which does not have these problems.

Exercise 3.4.2 Trace the execution of the sqrt(4) expression.

3.5 Nested Functions

The functional programming style encourages the construction of many small
helper functions. In the last example, the implementation of sqrt made use of the
helper functions sqrtIter, improve and isGoodEnough. The names of these func-
tions are relevant only for the implementation of sqrt. We normally do not want
users of sqrt to access these functions directly.

We can enforce this (and avoid name-space pollution) by including the helper func-
tions within the calling function itself:

def sqrt(x: Double) = {
def sqgrtlIter(guess: Double, x: Double): Double =



3.5 Nested Functions 25

if (isGoodEnough(guess, x)) guess
else sqrtIter(improve(guess, X), X)

def improve(guess: Double, x: Double) =
(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =
abs(square(guess) - x) < 0.001

sqrtliter(1.0, x)

}

In this program, the braces { ... } enclose a block. Blocks in Scala are themselves
expressions. Every block ends in a result expression which defines its value. The
result expression may be preceded by auxiliary definitions, which are visible only in
the block itself.

Every definition in a block must be followed by a semicolon, which separates this
definition from subsequent definitions or the result expression. However, a semi-
colon is inserted implicitly at the end of each line, unless one of the following con-
ditions is true.

1. Either the line in question ends in a word such as a period or an infix-operator
which would not be legal as the end of an expression.
2. Or the next line begins with a word that cannot start a expression.
3. Or we are inside parentheses (...) or brackets , because these cannot contain
multiple statements anyway.
Therefore, the following are all legal:

def f(x: Int) = x + 1;

f(1) + £(2)
def gl(x: Int) = x + 1
g(1) + g(2)
def g2(x: Int) = {x + 1}; /=* ‘;’ mandatory =*/ g2(1) + g2(2)
def hl1(x) =
X +
v

h1(1) » h1(2)

def h2(x: Int) = (
X // parentheses mandatory, otherwise a semicolon
+vy // would be inserted after the ‘x’.

)

h2(1) / h2(2)
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Scala uses the usual block-structured scoping rules. A name defined in some outer
block is visible also in some inner block, provided it is not redefined there. This rule
permits us to simplify our sqrt example. We need not pass x around as an additional
parameter of the nested functions, since it is always visible in them as a parameter

of the outer function sqrt. Here is the simplified code:

def sqrt(x: Double) = {

def sqrtIter(guess: Double): Double =
if (isGoodEnough(guess)) guess
else sqgrtIter(improve(guess))
def improve(guess: Double) =
(guess + x / guess) / 2
def isGoodEnough(guess: Double) =
abs(square(guess) - x) < 0.001
sqrtIter(1.0)

}

3.6 Tail Recursion

Consider the following function to compute the greatest common divisor of two

given numbers.

def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)

Using our substitution model of function evaluation, gcd(14, 21) evaluates as fol-

lows:

the bbb

—

gcd(14, 21)

if (21 == 0) 14 else gcd(21, 14 % 21)
if (false) 14 else gcd(21, 14 % 21)
gcd(21, 14 % 21)

gcd(21, 14)

if (14 == 0) 21 else gcd(14, 21 % 14)
gcd(14, 21 % 14)

gcd(14, 7)

if (7 == 0) 14 else gcd(7, 14 % 7)
gcd(7, 14 % 7)

gcd(7, 0)

if (0 == 0) 7 else gcd(0, 7 % 0)

7

Contrast this with the evaluation of another recursive function, factorial:

def factorial(n: Int): Int = if (n == 0) 1 else n * factorial(n - 1)
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The application factorial(5) rewrites as follows:

factorial(5)
if (5 ==0) 1 else 5 * factorial(5 - 1)
5 % factorial(5 - 1)
5 % factorial(4)
5 % (4 = factorial(3))

Prrbbrrd

.— 5% (4 = (3 * factorial(2)))

.— 5% (4 * (3 % (2 = factorial(1))))

.— 5% (4 * (3 * (2 = (1 = factorial(0))))
= 5x(4x B (2 (1x 1)

.— 120

There is an important difference between the two rewrite sequences: The terms in
the rewrite sequence of gcd have again and again the same form. As evaluation pro-
ceeds, their size is bounded by a constant. By contrast, in the evaluation of factorial
we get longer and longer chains of operands which are then multiplied in the last
part of the evaluation sequence.

Even though actual implementations of Scala do not work by rewriting terms, they
nevertheless should have the same space behavior as in the rewrite sequences. In
the implementation of gcd, one notes that the recursive call to gcd is the last action
performed in the evaluation of its body. One also says that gcd is “tail-recursive”.
The final call in a tail-recursive function can be implemented by a jump back to the
beginning of that function. The arguments of that call can overwrite the parameters
of the current instantiation of gcd, so that no new stack space is needed. Hence,
tail recursive functions are iterative processes, which can be executed in constant
space.

By contrast, the recursive call in factorial is followed by a multiplication. Hence,
a new stack frame is allocated for the recursive instance of factorial, and is deallo-
cated after that instance has finished. The given formulation of the factorial func-
tion is not tail-recursive; it needs space proportional to its input parameter for its
execution.

More generally, if the last action of a function is a call to another (possibly the same)
function, only a single stack frame is needed for both functions. Such calls are called
“tail calls”. In principle, tail calls can always re-use the stack frame of the calling
function. However, some run-time environments (such as the Java VM) lack the
primitives to make stack frame re-use for tail calls efficient. A production quality
Scala implementation is therefore only required to re-use the stack frame of a di-
rectly tail-recursive function whose last action is a call to itself. Other tail calls might
be optimized also, but one should not rely on this across implementations.

Exercise 3.6.1 Design a tail-recursive version of factorial.






Chapter 4
First-Class Functions

A function in Scala is a “first-class value”. Like any other value, it may be passed as
a parameter or returned as a result. Functions which take other functions as pa-
rameters or return them as results are called higher-order functions. This chapter
introduces higher-order functions and shows how they provide a flexible mecha-
nism for program composition.

As a motivating example, consider the following three related tasks:

1. Write a function to sum all integers between two given numbers a and b:

def sumInts(a: Int, b: Int): Int =
if (a > b) 0 else a + sumInts(a + 1, b)

2. Write a function to sum the squares of all integers between two given numbers
aand b:

def square(x: Int): Int = x * X
def sumSquares(a: Int, b: Int): Int =
if (a > b) 0 else square(a) + sumSquares(a + 1, b)

3. Write a function to sum the powers 2" of all integers n between two given
numbers a and b:

def powerOfTwo(x: Int): Int = if (x == 0) 1 else x * powerOfTwo(x - 1)

def sumPowersOfTwo(a: Int, b: Int): Int =
if (a > b) 0 else powerOfTwo(a) + sumPowersOfTwo(a + 1, b)

These functions are all instances of ZZ f (n) for different values of f. We can factor
out the common pattern by defining a function sum:

def sum(f: Int => Int, a: Int, b: Int): Int =
if (a > b) 0 else f(a) + sum(f, a + 1, b)



30 First-Class Functions

The type Int => Int is the type of functions that take arguments of type Int and
return results of type Int. So sum is a function which takes another function as a
parameter. In other words, sum is a higher-order function.

Using sum, we can formulate the three summing functions as follows.

def sumInts(a: Int, b: Int): Int = sum(id, a, b)
def sumSquares(a: Int, b: Int): Int = sum(square, a, b)
def sumPowersOfTwo(a: Int, b: Int): Int = sum(powerOfTwo, a, b)

where

def id(x: Int): Int = x
def square(x: Int): Int = x * X
def powerOfTwo(x: Int): Int = if (x == 0) 1 else x * powerOfTwo(x - 1)

4.1 Anonymous Functions

Parameterization by functions tends to create many small functions. In the previous
example, we defined id, square and power as separate functions, so that they could
be passed as arguments to sum.

Instead of using named function definitions for these small argument functions, we
can formulate them in a shorter way as anonymous functions. An anonymous func-
tion is an expression that evaluates to a function; the function is defined without
giving it a name. As an example consider the anonymous square function:

(x: Int) => x * X

The part before the arrow ‘=>’ is the parameter of the function, whereas the part
following the ‘=>’ is its body. If there are several parameters, we need to enclose
them in parentheses. For instance, here is an anonymous function which multiples
its two arguments.

(x: Int, y: Int) => x * vy

Using anonymous functions, we can reformulate the first two summation functions
without named auxiliary functions:

def sumInts(a: Int, b: Int): Int = sum(x: Int => x, a, b)
def sumSquares(a: Int, b: Int): Int = sum(x: Int => x * x, a, b)

Often, the Scala compiler can deduce the parameter type(s) from the context of the
anonymous function in which case they can be omitted. For instance, in the case
of sumInts or sumSquares, one knows from the type of sum that the first parameter
must be a function of type Int => Int. Hence, the parameter type Int is redundant
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and may be omitted. If there is a single parameter without a type, we may also omit
the parentheses around it:

def sumInts(a: Int, b: Int): Int = sum(x => x, a, b)
def sumSquares(a: Int, b: Int): Int = sum(x => x * X, a, b)

Generally, the Scala term (x;: Ty, ..., X,: T,) => E defines a function which
maps its parameters x;, ..., X, to the result of the expression E (where E may
refer to x;, ..., X,). Anonymous functions are not essential language elements

of Scala, as they can always be expressed in terms of named functions. Indeed, the
anonymous function

(x1: Ty, ..., Xp: Tp) = E

is equivalent to the block

{def £ (x3: Ty, ..., Xp: Tp) =E ; £}

where f is fresh name which is used nowhere else in the program. We also say,
anonymous functions are “syntactic sugar”.

4.2 Currying

The latest formulation of the summing functions is already quite compact. But we
can do even better. Note that a and b appear as parameters and arguments of every
function but they do not seem to take part in interesting combinations. Is there a
way to get rid of them?

Let’s try to rewrite sum so that it does not take the bounds a and b as parameters:

def sum(f: Int => Int): (Int, Int) => Int = {
def sumF(a: Int, b: Int): Int =
if (a > b) 0 else f(a) + sumF(a + 1, b)
&sumF

In this formulation, sum is a function which returns another function, namely the
specialized summing function sumF. This latter function does all the work; it takes
the bounds a and b as parameters, applies sum’s function parameter f to all integers
between them, and sums up the results.

Using this new formulation of sum, we can now define:
def sumInts = &sum(x => x)

def sumSquares = &sum(x => x * X)
def sumPowersOfTwo = &sum(powerOfTwo)
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Or, equivalently, with value definitions:

val sumInts = &sum(x => x)
val sumSquares = &sum(x => X * X)
val sumPowersOfTwo = &sum(powerOfTwo)

Note the prefix operator & in front of the right-hand sides of the definitions above.
This operator expresses that the partial applications of sum should be treated as
function values. Ifitis omitted, the Scala compiler would complain that the applica-
tions of sum lack some of their arguments. The & operator can however be omitted if
the expected type of an expression is a function type (for instance, this was the case
in for sumF expression in the last example).

sumInts, sumSquares, and sumPowersOfTwo can be applied like any other function.
For instance,

scala> sumSquares(1l, 10) + sumPowersOfTwo(10, 20)
unnamed0: Int = 267632001

How are function-returning functions applied? As an example, in the expression
sum(x => x * x)(1, 10) ,

the function sum is applied to the squaring function (x => x * x). The resulting
function is then applied to the second argument list, (1, 10).

This notation is possible because function application associates to the left. That is,
if args, and args, are argument lists, then

f(args;)(args,) isequivalentto (f(args;))(args,)

In our example, sum(x => x * x)(1, 10) is equivalent to the following expression:
(sum(x => x * x))(1, 10).

The style of function-returning functions is so useful that Scala has special syntax
for it. For instance, the next definition of sum is equivalent to the previous one, but
is shorter:

def sum(f: Int => Int)(a: Int, b: Int): Int =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

Generally, a curried function definition

def f (args;) ... (args,) = E

where n > 1 expands to

def f (argsy) ... (args;p—1) = { def g (argsy) =E ; g }

where g is a fresh identifier. Or, shorter, using an anonymous function:
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def f (args;) ... (args;p—1) = ( args, ) = E .

Performing this step n times yields that

def f (args;) ... (args,) = E

is equivalent to

def f = (args;) => ... => (args,) => E .

Or, equivalently, using a value definition:

val f = (args;) => ... => (args,) = E .

This style of function definition and application is called curryingafter its promoter,
Haskell B. Curry, a logician of the 20th century, even though the idea goes back fur-
ther to Moses Schonfinkel and Gottlob Frege.

The type of a function-returning function is expressed analogously to its param-
eter list. Taking the last formulation of sum as an example, the type of sum is
(Int => Int) => (Int, Int) => Int. This is possible because function types as-
sociate to the right. Le.

Ty => Ty => T3 is equivalent to Ty = (Ty => T3)

Exercise 4.2.1 1. The sum function uses a linear recursion. Can you write a tail-
recursive one by filling in the ?22’s?

def sum(f: Int => Double)(a: Int, b: Int): Double = {
def iter(a, result) = {
if (??7) ?°
else iter(??, ??)
3
iter(??, ??)

}

Exercise 4.2.2 Write a function product that computes the product of the values of
functions at points over a given range.

Exercise 4.2.3 Write factorial in terms of product.

Exercise 4.2.4 Canyou write an even more general function which generalizes both
sum and product?



34 First-Class Functions

4.3 Example: Finding Fixed Points of Functions

A number x is called a fixed point of a function f if

fx) =x .

For some functions f we can locate the fixed point by beginning with an initial guess
and then applying f repeatedly, until the value does not change anymore (or the
change is within a small tolerance). This is possible if the sequence

x, £(x), £(£(x)), £(£(£(x))),

converges to fixed point of f. This idea is captured in the following “fixed-point
finding function”:

val tolerance = 0.0001
def isCloseEnough(x: Double, y: Double) = abs((x - y) / x) < tolerance
def fixedPoint(f: Double => Double) (firstGuess: Double) = {
def iterate(guess: Double): Double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)
}
iterate(firstGuess)

}

We now apply this idea in a reformulation of the square root function. Let’s start
with a specification of sqrt:

sqrt(x) the y such that vy * vy = x

the y such that v=x/vy

Hence, sqrt(x) is a fixed point of the function y => x / y. This suggests that
sqrt(x) can be computed by fixed point iteration:

def sqgrt(x: double) = fixedPoint(y => x / y)(1.0)

But if we try this, we find that the computation does not converge. Let’s instrument
the fixed point function with a print statement which keeps track of the current
guess value:

def fixedPoint(f: Double => Double) (firstGuess: Double) = {
def iterate(guess: Double): Double = {
val next = f(guess)
println(next)
if (isCloseEnough(guess, next)) next
else iterate(next)
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iterate(firstGuess)

}

Then, sqrt(2) yields:

2.0
1.0
2.0
1.0
2.0

One way to control such oscillations is to prevent the guess from changing too
much. This can be achieved by averaging successive values of the original sequence:

scala> def sqrt(x: Double) = fixedPoint(y => (v + x/v) / 2)(1.0)
sqrt: (Double)Double

scala> sqrt(2.0)
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, expanding the fixedPoint function yields exactly our previous definition of
fixed point from Section 3.4.

The previous examples showed that the expressive power of a language is consid-
erably enhanced if functions can be passed as arguments. The next example shows
that functions which return functions can also be very useful.

Consider again fixed point iterations. We started with the observation that v/(x) is
a fixed point of the functiony => x / y. Then we made the iteration converge by
averaging successive values. This technique of average dampingis so general that it
can be wrapped in another function.

def averageDamp(f: Double => Double)(x: Double) = (x + f(x)) / 2

Using averageDamp, we can reformulate the square root function as follows.

def sqrt(x: Double) = fixedPoint(averageDamp(y => x/v))(1.0)

This expresses the elements of the algorithm as clearly as possible.

Exercise 4.3.1 Write a function for cube roots using fixedPoint and averageDamp.
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4.4 Summary

We have seen in the previous chapter that functions are essential abstractions, be-
cause they permit us to introduce general methods of computing as explicit, named
elements in our programming language. The present chapter has shown that these
abstractions can be combined by higher-order functions to create further abstrac-
tions. As programmers, we should look out for opportunities to abstract and to
reuse. The highest possible level of abstraction is not always the best, but it is im-
portant to know abstraction techniques, so that one can use abstractions where ap-
propriate.

4.5 Language Elements Seen So Far

Chapters 3 and 4 have covered Scala’s language elements to express expressions and
types comprising of primitive data and functions. The context-free syntax of these
language elements is given below in extended Backus-Naur form, where ‘|’ denotes
alternatives, [ . . .] denotes option (0 or 1 occurrence), and { . . . } denotes repetition
(0 or more occurrences).

Characters

Scala programs are sequences of (Unicode) characters. We distinguish the following
character sets:

* whitespace, such as , tabulator, or newline characters,

)«

¢ Jetters ‘a’ to ‘z’, ‘A’ to ‘Z),

e digits ‘0’ to 9,

the delimiter characters

, ; ( ) { ¥ [ ] AU ’

operator characters, such as ‘#’ ‘+, ‘:’. Essentially, these are printable charac-
ters which are in none of the character sets above.

Lexemes:
ident = letter {letter | digit}
| operator { operator }
| ident ’_’ ident
literal = “as in Java”

Literals are as in Java. They define numbers, characters, strings, or boolean values.
Examples of literals as 0, 1.0e10, 'x’, "he said "hi!"", or true.
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Identifiers can be of two forms. They either start with a letter, which is followed by a
(possibly empty) sequence of letters or symbols, or they start with an operator char-
acter, which is followed by a (possibly empty) sequence of operator characters. Both
forms of identifiers may contain underscore characters ‘_". Furthermore, an under-
score character may be followed by either sort of identifier. Hence, the following are
all legal identifiers:

X Rooml0a + - foldl_: +_vector

It follows from this rule that subsequent operator-identifiers need to be separated
by whitespace. For instance, the input x+-y is parsed as the three token sequence x,
+-, y. If we want to express the sum of x with the negated value of y, we need to add
at least one space, e.g. x+ -V.

The $ character is reserved for compiler-generated identifiers; it should not be used
in source programs.

The following are reserved words, they may not be used as identifiers:

abstract case catch class def
do else extends false final
finally for if implicit import
match new null object override
package private protected requires return
sealed super this throw trait
try true type val var
while with yield
_ : = => <- <: <% >: # @
Types:
Type = SimpleType | FunctionType
FunctionType = SimpleType ’=>’ Type | *(’ [Types] ')’ '=>’ Type
SimpleType = Byte | Short | Char | Int | Long | Float | Double |
Boolean | Unit | String
Types = Type {*,’ Type}
Types can be:

* number types Byte, Short, Char, Int, Long, Float and Double (these are as in
Java),

the type Boolean with values true and false,

the type Unit with the only value {},

the type String,

function types such as (Int, Int) => Intor String => Int => String.
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Expressions:

Expr = InfixExpr | FunctionExpr | if ’(’ Expr ’)’ Expr else Expr
InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr

Operator = ident

PrefixExpr = [’+" | ’-" | ’!7 | ’~’ ] SimpleExpr

SimpleExpr = ident | literal | SimpleExpr ’.’ ident | Block
FunctionExpr = Bindings ’'=>’ Expr

Bindings = ident [’:’ SimpleType] | '(’ [Binding {’,’ Binding}] ’)’
Binding = ident [’:’ Typel

Block = "{’ {Def ’;’} Expr '}’

Expressions can be:
e identifiers such as x, isGoodEnough, =, or +-,
e literals, such as0,1.0, or "abc",
¢ field and method selections, such as System.out.println,
 function applications, such as sqrt(x),
e operator applications, such as -xory + x,
e conditionals, such as if (x < 0) -x else x,
* blocks, suchas { val x = abs(y) ; x * 2 },

e anonymous functions, suchasx => x + 1lor (x: Int, y: Int) => x + V.

Definitions:
Def = FunDef | ValDef
FunDef = ’def’ ident {’(’ [Parameters] ’)’} [’:’ Type] '=’ Expr
ValDef = ’'val’ ident [’:’ Type] ’'=' Expr
Parameters = Parameter {’,’ Parameter}
Parameter = ident ’':’ [’=>"] Type

Definitions can be:
¢ function definitions such as def square(x: Int): Int = x * X,

¢ value definitions such asval vy = square(2).



Chapter 5

Classes and Objects

Scala does not have a built-in type of rational numbers, but it is easy to define one,
using a class. Here’s a possible implementation.

class Rational(n: Int, d: Int) {

private def gcd(x: Int, y: Int): Int = {
if x=0) v
else if (x < 0) gcd(-x, V)
else if (y < 0) -gcd(x, -V)
else gcd(y % x, x)

3

private val g = gcd(n, d)

val numer: Int = n/g
val denom: Int = d/g
def +(that: Rational) =
new Rational (numer * that.denom + that.numer * denom,
denom * that.denom)
def -(that: Rational) =
new Rational (numer * that.denom - that.numer * denom,
denom * that.denom)
def (that: Rational) =
new Rational (numer * that.numer, denom * that.denom)
def /(that: Rational) =
new Rational(numer * that.denom, denom * that.numer)

This defines Rational as a class which takes two constructor arguments n and d,
containing the number’s numerator and denominator parts. The class provides
fields which return these parts as well as methods for arithmetic over rational num-
bers. Each arithmetic method takes as parameter the right operand of the opera-
tion. The left operand of the operation is always the rational number of which the
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method is a member.

Private members. The implementation of rational numbers defines a private
method gcd which computes the greatest common denominator of two integers, as
well as a private field g which contains the gcd of the constructor arguments. These
members are inaccessible outside class Rational. They are used in the implementa-
tion of the class to eliminate common factors in the constructor arguments in order
to ensure that numerator and denominator are always in normalized form.

Creating and Accessing Objects. As an example of how rational numbers can be
used, here’s a program that prints the sum of all numbers 1/i where i ranges from 1
to 10.

var i = 1
var x = new Rational(0, 1)
while (i <= 10) {
X += new Rational(l, i)
i+4=1
}
println(

+ x.numer + "/" + x.denom)

The + takes as left operand a string and as right operand a value of arbitrary type. It
returns the result of converting its right operand to a string and appending it to its
left operand.

Inheritance and Overriding. Every class in Scala has a superclass which it ex-
tends. If a class does not mention a superclass in its definition, the root type
scala.AnyRef is implicitly assumed (for Java implementations, this type is an alias
for java.lang.Object. For instance, class Rational could equivalently be defined
as

class Rational(n: Int, d: Int) extends AnyRef {
... // as before

A class inherits all members from its superclass. It may also redefine (or: override)
some inherited members. For instance, class java.lang.0Object defines a method
toString which returns a representation of the object as a string:

class Object {

def toString: String = ...
}
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The implementation of toString in Object forms a string consisting of the object’s
class name and a number. It makes sense to redefine this method for objects that
are rational numbers:

class Rational(n: Int, d: Int) extends AnyRef {
... // as before
override def toString =

}

+ numer + "/" + denom

Note that, unlike in Java, redefining definitions need to be preceded by an override
modifier.

If class A extends class B, then objects of type A may be used wherever objects of
type B are expected. We say in this case that type A conformsto type B. For instance,
Rational conforms to AnyRef, so it is legal to assign a Rational value to a variable
of type AnyRef:

var x: AnyRef = new Rational(l, 2)

Parameterless Methods. Unlike in Java, methods in Scala do not necessarily take
a parameter list. An example is the square method below. This method is invoked
by simply mentioning its name.

class Rational(n: Int, d: Int) extends AnyRef {
... // as before
def square = new Rational (numerxnumer, denom*denom)

}
val r = new Rational(3, 4)
println(r.square) // prints‘‘9/16’

That is, parameterless methods are accessed just as value fields such as numer are.
The difference between values and parameterless methods lies in their definition.
The right-hand side of a value is evaluated when the object is created, and the value
does not change afterwards. A right-hand side of a parameterless method, on the
other hand, is evaluated each time the method is called. The uniform access of
fields and parameterless methods gives increased flexibility for the implementer of
a class. Often, a field in one version of a class becomes a computed value in the next
version. Uniform access ensures that clients do not have to be rewritten because of
that change.

Abstract Classes. Consider the task of writing a class for sets of integer numbers
with two operations, incl and contains. (s incl x) should return a new set which
contains the element x together with all the elements of set s. (s contains x)
should return true if the set s contains the element x, and should return false oth-
erwise. The interface of such sets is given by:
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abstract class IntSet {
def incl(x: Int): IntSet
def contains(x: Int): Boolean

}

IntSet is labeled as an abstract class. This has two consequences. First, abstract
classes may have deferred members which are declared but which do not have an
implementation. In our case, both incl and contains are such members. Second,
because an abstract class might have unimplemented members, no objects of that
class may be created using new. By contrast, an abstract class may be used as a base
class of some other class, which implements the deferred members.

Traits. Instead of abstract class one also often uses the keyword trait in Scala.
Traits are abstract classes that are meant to be added to some other class. This
might be because a trait adds some methods or fields to an unknown parent class.
For instance, a trait Bordered might be used to add a border to a various graphical
components. Another usage scenario is where the trait collects signatures of some
functionality provided by different classes, much in the way a Java interface would
work.

Since IntSet falls in this category, one can alternatively define it as a trait:

trait IntSet {
def incl(x: Int): IntSet
def contains(x: Int): Boolean

}

Implementing Abstract Classes. Let’s say, we plan to implement sets as binary
trees. There are two possible forms of trees. A tree for the empty set, and a tree
consisting of an integer and two subtrees. Here are their implementations.

class EmptySet extends IntSet {
def contains(x: Int): Boolean = false

def incl(x: Int): IntSet = new NonEmptySet(x, new EmptySet, new EmptySet)

}

class NonEmptySet(elem: Int, left: IntSet, right: IntSet) extends IntSet {

def contains(x: Int): Boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true

def incl(x: Int): IntSet =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this
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Both EmptySet and NonEmptySet extend class IntSet. This implies that types
EmptySet and NonEmptySet conform to type IntSet — a value of type EmptySet or
NonEmptySet may be used wherever a value of type IntSet is required.

Exercise 5.0.1 Write methods union and intersection to form the union and in-
tersection between two sets.

Exercise 5.0.2 Add a method

def excl(x: Int)

to return the given set without the element x. To accomplish this, it is useful to also
implement a test method

def isEmpty: Boolean

for sets.

Dynamic Binding. Object-oriented languages (Scala included) use dynamic dis-
patch for method invocations. That is, the code invoked for a method call depends
on the run-time type of the object which contains the method. For example, con-
sider the expression s contains 7 where s is a value of declared type s: IntSet.
Which code for contains is executed depends on the type of value of s at run-time.
If it is an EmptySet value, it is the implementation of contains in class EmptySet
that is executed, and analogously for NonEmptySet values. This behavior is a direct
consequence of our substitution model of evaluation. For instance,

(new EmptySet).contains(7)
-> (by replacing contains by its body in class EmptySet)
false

Or,
new NonEmptySet(7, new EmptySet, new EmptySet).contains(1)
-> (by replacing contains by its body in class NonEmptySet)
if (1 < 7) new EmptySet contains 1
else if (1 > 7) new EmptySet contains 1

else true

-> (by rewriting the conditional)
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new EmptySet contains 1
-> (by replacing contains by its body in class EmptySet)
false .

Dynamic method dispatch is analogous to higher-order function calls. In both
cases, the identity of code to be executed is known only at run-time. This similarity
is not just superficial. Indeed, Scala represents every function value as an object
(see Section 7.6).

Objects. In the previous implementation of integer sets, empty sets were ex-
pressed with new EmptySet; so a new object was created every time an empty set
value was required. We could have avoided unnecessary object creations by defin-
ing a value empty once and then using this value instead of every occurrence of
new EmptySet. For example:

val EmptySetVal = new EmptySet

One problem with this approach is that a value definition such as the one above is
not a legal top-level definition in Scala; it has to be part of another class or object.
Also, the definition of class EmptySet now seems a bit of an overkill — why define
a class of objects, if we are only interested in a single object of this class? A more
direct approach is to use an object definition. Here is a more streamlined alternative
definition of the empty set:

object EmptySet extends IntSet {

def contains(x: Int): Boolean = false

def incl(x: Int): IntSet = new NonEmptySet(x, EmptySet, EmptySet)
}

The syntax of an object definition follows the syntax of a class definition; it has
an optional extends clause as well as an optional body. As is the case for classes,
the extends clause defines inherited members of the object whereas the body de-
fines overriding or new members. However, an object definition defines a single
object only it is not possible to create other objects with the same structure using
new. Therefore, object definitions also lack constructor parameters, which might be
present in class definitions.

Object definitions can appear anywhere in a Scala program; including at top-level.
Since there is no fixed execution order of top-level entities in Scala, one might ask
exactly when the object defined by an object definition is created and initialized.
The answer is that the object is created the first time one of its members is accessed.
This strategy is called lazy evaluation.
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Standard Classes. Scalais a pure object-oriented language. This means that every
value in Scala can be regarded as an object. In fact, even primitive types such as int
or boolean are not treated specially. They are defined as type aliases of Scala classes
in module Predef:

type boolean = scala.Boolean
type int = scala.Int
type long = scala.lLong

For efficiency, the compiler usually represents values of type scala.Int by 32 bit
integers, values of type scala.Boolean by Java’s booleans, etc. But it converts these
specialized representations to objects when required, for instance when a primitive
Int value is passed to a function with a parameter of type AnyRef. Hence, the special
representation of primitive values is just an optimization, it does not change the
meaning of a program.

Here is a specification of class Boolean.
package scala

abstract class Boolean {
def && (x: => Boolean): Boolean

def || (x: => Boolean): Boolean
def ! : Boolean
def == (x: Boolean) : Boolean
def != (x: Boolean) : Boolean
def < (x: Boolean) : Boolean
def > (x: Boolean) : Boolean
def <= (x: Boolean) : Boolean
def >= (x: Boolean) : Boolean

Booleans can be defined using only classes and objects, without reference to a built-
in type of booleans or numbers. A possible implementation of class Boolean is given
below. This is not the actual implementation in the standard Scala library. For effi-
ciency reasons the standard implementation uses built-in booleans.

package scala
abstract class Boolean {
def ifThenElse(thenpart: => Boolean, elsepart: => Boolean)

def && (x: => Boolean): Boolean = ifThenElse(x, false)
def || (x: => Boolean): Boolean = ifThenElse(true, x)
def ! : Boolean = ifThenFlse(false, true)

def == (x: Boolean) : Boolean = ifThenElse(x, x.!)
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def !'= (x: Boolean)
def < (x: Boolean)
def > (x: Boolean)
def <= (x: Boolean)
def >= (x: Boolean)

}

case object True extends Boolean {
def ifThenElse(t: => Boolean, e:

}

case object False extends Boolean {
def ifThenElse(t: => Boolean, e:

}

Here is a partial specification of class Int.

package scala

abstract class Int extends AnyVal {

def toLong: Long
def toFloat: Float
def toDouble: Double

def
def
def (that: Int): Int

def << (cnt: Int): Int

: Boolean
: Boolean
: Boolean
: Boolean
: Boolean

+ (that: Double): Double
+ (that: Float): Float

def + (that: Long): Long
+

ifThenElse(x.!, x)
ifThenElse(false, x)
ifThenElse(x.!, false)
ifThenElse(x, true)
ifThenElse(true, x.!)

=> Boolean) = t
=> Boolean) = e
// analogous for -, *, /, %

// analogous for >>, >>>

def & (that: Long): Long

def & (that: Int): Int

// analogous for [, #

def == (that: Double): Boolean
def == (that: Float): Boolean
def == (that: Long): Boolean

// analogous for !=, <, >, <=, >=

Class Int can in principle also be implemented using just objects and classes, with-
outreference to a built in type of integers. To see how, we consider a slightly simpler
problem, namely how to implement a type Nat of natural (i.e. non-negative) num-
bers. Here is the definition of an abstract class Nat:

abstract class Nat {
def isZero: Boolean
def predecessor: Nat
def successor: Nat
def + (that: Nat): Nat
def - (that: Nat): Nat
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To implement the operations of class Nat, we define a sub-object Zero and a sub-
class Succ (for successor). Each number N is represented as N applications of the
Succ constructor to Zero:

new Succ(... new Sucg (Zero) ... )

N times

The implementation of the Zero object is straightforward:

object Zero extends Nat {
def isZero: Boolean = true
def predecessor: Nat = error('negative number")
def successor: Nat = new Succ(Zero)
def + (that: Nat): Nat = that
def - (that: Nat): Nat = if (that.isZero) Zero
else error('negative number")

The implementation of the predecessor and subtraction functions on Zero throws
an Error exception, which aborts the program with the given error message.

Here is the implementation of the successor class:

class Succ(x: Nat) extends Nat {
def isZero: Boolean = false
def predecessor: Nat = x
def successor: Nat = new Succ(this)
def + (that: Nat): Nat = x + that.successor
def - (that: Nat): Nat = x - that.predecessor

Note the implementation of method successor. To create the successor of a num-
ber, we need to pass the object itself as an argument to the Succ constructor. The
object itself is referenced by the reserved name this.

The implementations of + and - each contain a recursive call with the constructor
argument as receiver. The recursion will terminate once the receiver is the Zero
object (which is guaranteed to happen eventually because of the way numbers are
formed).

Exercise 5.0.3 Write an implementation Integer of integer numbers The imple-
mentation should support all operations of class Nat while adding two methods

def isPositive: Boolean
def negate: Integer
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The first method should return true if the number is positive. The second method
should negate the number. Do not use any of Scala’s standard numeric classes in
your implementation. (Hint: There are two possible ways to implement Integer.
One can either make use the existing implementation of Nat, representing an inte-
ger as a natural number and a sign. Or one can generalize the given implementation
of Nat to Integer, using the three subclasses Zero for 0, Succ for positive numbers
and Pred for negative numbers.)

Language Elements Introduced In This Chapter
Types:

Type = ... | ident

Types can now be arbitrary identifiers which represent classes.
Expressions:

Expr = ... | Expr ident | ’new’ Expr | ’this’

An expression can now be an object creation, or a selection E.m of a member m from
an object-valued expression E, or it can be the reserved name this.

Definitions and Declarations:

Def = FunDef | ValDef | ClassDef | TraitDef | ObjectDef

ClassDef = [’abstract’] ’class’ ident [’(’ [Parameters] ’)’]
[’extends’ Expr] [‘{’ {TemplateDef} ‘}’]

TraitDef = ’trait’ ident [’extends’ Expr] [’{’ {TemplateDef} ’}’]

ObjectDef = ’object’ ident [’extends’ Expr] [’{’ {ObjectDef} ’}’]

TemplateDef = [Modifier] (Def | Dcl)

ObjectDef = [Modifier] Def

Modifier = ’private’ | ’override’

Dcl = FunDcl | ValDcl

FunDcl = ’def’ ident {’(’ [Parameters] ’)’} ’:’ Type

ValDcl = ’val’ ident ’':’ Type

A definition can now be a class, trait or object definition such as

class C(params) extends B { defs }
trait T extends B { defs }
object O extends B { defs }

The definitions defs in a class, trait or object may be preceded by modifiers private
or override.

Abstract classes and traits may also contain declarations. These introduce deferred
functions or values with their types, but do not give an implementation. Deferred
members have to be implemented in subclasses before objects of an abstract class
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or trait can be created.






Chapter 6

Case Classes and Pattern Match-
INng

Say, we want to write an interpreter for arithmetic expressions. To keep things sim-
ple initially, we restrict ourselves to just numbers and + operations. Such expres-
sions can be represented as a class hierarchy, with an abstract base class Expr as the
root, and two subclasses Number and Sum. Then, an expression1 + (3 + 7) would
be represented as

new Sum(new Number(1l), new Sum(new Number(3), new Number(7)))

Now, an evaluator of an expression like this needs to know of what form it is (either
Sum or Number) and also needs to access the components of the expression. The
following implementation provides all necessary methods.

abstract class Expr {
def isNumber: Boolean
def isSum: Boolean
def numValue: Int
def leftOp: Expr
def rightOp: Expr
}
class Number(n: Int) extends Expr {
def isNumber: Boolean = true
def isSum: Boolean = false
def numValue: Int = n
def leftOp: Expr = error('Number.leftOp")
def rightOp: Expr = error("Number.rightOp")
}
class Sum(el: Expr, e2: Expr) extends Expr {
def isNumber: Boolean = false
def isSum: Boolean = true
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def numValue: Int = error("Sum.numValue")
def leftOp: Expr = el
def rightOp: Expr = e2

}

With these classification and access methods, writing an evaluator function is sim-
ple:

def eval(e: Expr): Int = {
if (e.isNumber) e.numValue
else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
else error("unrecognized expression kind")

}

However, defining all these methods in classes Sum and Number is rather tedious.
Furthermore, the problem becomes worse when we want to add new forms of ex-
pressions. For instance, consider adding a new expression form Prod for products.
Not only do we have to implement a new class Prod, with all previous classification
and access methods; we also have to introduce a new abstract method isProduct in
class Expr and implement that method in subclasses Number, Sum, and Prod. Having
to modify existing code when a system grows is always problematic, since it intro-
duces versioning and maintenance problems.

The promise of object-oriented programming is that such modifications should be
unnecessary, because they can be avoided by re-using existing, unmodified code
through inheritance. Indeed, a more object-oriented decomposition of our prob-
lem solves the problem. The idea is to make the “high-level” operation eval a
method of each expression class, instead of implementing it as a function outside
the expression class hierarchy, as we have done before. Because eval is now a mem-
ber of all expression nodes, all classification and access methods become superflu-
ous, and the implementation is simplified considerably:

abstract class Expr {
def eval: Int

3

class Number(n: Int) extends Expr {
def eval: Int = n

}

class Sum(el: Expr, e2: Expr) extends Expr {
def eval: Int = el.eval + e2.eval

Furthermore, adding a new Prod class does not entail any changes to existing code:

class Prod(el: Expr, e2: Expr) extends Expr {
def eval: Int = el.eval * e2.eval
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The conclusion we can draw from this example is that object-oriented decomposi-
tion is the technique of choice for constructing systems that should be extensible
with new types of data. But there is also another possible way we might want to ex-
tend the expression example. We might want to add new operations on expressions.
For instance, we might want to add an operation that pretty-prints an expression
tree to standard output.

If we have defined all classification and access methods, such an operation can eas-
ily be written as an external function. Here is an example:

def print(e: Expr) {
if (e.isNumber) Console.print(e.numValue)
else if (e.isSum) {
Console.print("(")
print(e.leftOp)
Console.print("+")
print(e.rightOp)
Console.print(")")
} else error("unrecognized expression kind")

}

However, if we had opted for an object-oriented decomposition of expressions, we
would need to add a new print procedure to each class:

abstract class Expr {
def eval: Int
def print
}
class Number(n: Int) extends Expr {
def eval: Int = n
def print { Console.print(n) }
}
class Sum(el: Expr, e2: Expr) extends Expr {
def eval: Int = el.eval + e2.eval
def print {
Console.print("(")
print(el)
Console.print("+")
print(e2)
Console.print(")")

Hence, classical object-oriented decomposition requires modification of all existing
classes when a system is extended with new operations.
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As yet another way we might want to extend the interpreter, consider expression
simplification. For instance, we might want to write a function which rewrites ex-
pressions of the forma * b + a « ctoa * (b + c¢). This operation requires in-
spection of more than a single node of the expression tree at the same time. Hence,
it cannot be implemented by a method in each expression kind, unless that method
can also inspect other nodes. So we are forced to have classification and access
methods in this case. This seems to bring us back to square one, with all the prob-
lems of verbosity and extensibility.

Taking a closer look, one observers that the only purpose of the classification and
access functions is to reverse the data construction process. They let us determine,
first, which sub-class of an abstract base class was used and, second, what were the
constructor arguments. Since this situation is quite common, Scala has a way to
automate it with case classes.

6.1 Case Classes and Case Objects

Case classes and case objects are defined like a normal classes or objects, except that
the definition is prefixed with the modifier case. For instance, the definitions

abstract class Expr
case class Number(n: Int) extends Expr
case class Sum(el: Expr, e2: Expr) extends Expr

introduce Number and Sum as case classes. The case modifier in front of a class or
object definition has the following effects.

1. Case classes implicitly come with a constructor function, with the same name
as the class. In our example, the two functions

def Number(n: Int) = new Number(n)
def Sum(el: Expr, e2: Expr) = new Sum(el, e2)

would be added. Hence, one can now construct expression trees a bit more
concisely, as in

Sum(Sum(Number (1), Number(2)), Number(3))

2. Case classes and case objects implicitly come with implementations of meth-
ods toString, equals and hashCode, which override the methods with the
same name in class AnyRef. The implementation of these methods takes
in each case the structure of a member of a case class into account. The
toString method represents an expression tree the way it was constructed.
So,

Sum(Sum(Number (1), Number(2)), Number(3))
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would be converted to exactly that string, whereas the default implementa-
tion in class AnyRef would return a string consisting of the outermost con-
structor name Sum and a number. The equals methods treats two case mem-
bers of a case class as equal if they have been constructed with the same con-
structor and with arguments which are themselves pairwise equal. This also
affects the implementation of == and !=, which are implemented in terms of
equals in Scala. So,

Sum(Number (1), Number(2)) == Sum(Number(1l), Number(2))

will yield true. If Sum or Number were not case classes, the same expression
would be false, since the standard implementation of equals in class AnyRef
always treats objects created by different constructor calls as being differ-
ent. The hashCode method follows the same principle as other two meth-
ods. It computes a hash code from the case class constructor name and the
hash codes of the constructor arguments, instead of from the object’s address,
which is what the as the default implementation of hashCode does.

3. Case classes implicitly come with nullary accessor methods which retrieve
the constructor arguments. In our example, Number would obtain an acces-
sor method

def n: Int

which returns the constructor parameter n, whereas Sum would obtain two
accessor methods

def el: Expr, e2: Expr

Hence, if for a value s of type Sum, say, one can now write s.el, to access the
left operand. However, for a value e of type Expr, the term e.el would be
illegal since el is defined in Sum; it is not a member of the base class Expr. So,
how do we determine the constructor and access constructor arguments for
values whose static type is the base class Expr? This is solved by the fourth
and final particularity of case classes.

4. Case classes allow the constructions of patterns which refer to the case class
constructor.

6.2 Pattern Matching

Pattern matching is a generalization of C or Java’'s switch statement to class hier-
archies. Instead of a switch statement, there is a standard method match, which is
defined in Scala’s root class Any, and therefore is available for all objects. The match
method takes as argument a number of cases. For instance, here is an implementa-
tion of eval using pattern matching.
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def eval(e: Expr): Int = e match {
case Number(x) => x
case Sum(l, r) => eval(l) + eval(r)

}

In this example, there are two cases. Each case associates a pattern with an expres-
sion. Patterns are matched against the selector values e. The first pattern in our
example, Number (n), matches all values of the form Number (v), where v is an arbi-
trary value. In that case, the pattern variablen is bound to the value v. Similarly, the
pattern Sum(1l, r) matches all selector values of form Sum(v;, v2) and binds the
pattern variables 1 and r to v; and v», respectively.

In general, patterns are built from

* (Case class constructors, e.g. Number, Sum, whose arguments are again patterns,
* pattern variables, e.g. n, el, e2,
e the “wildcard” pattern _,
e literals, e.g. 1, true, "abc",
* constant identifiers, e.g. MAXINT, EmptySet.
Pattern variables always start with a lower-case letter, so that they can be distin-
guished from constant identifiers, which start with an upper case letter. Each vari-

able name may occur only once in a pattern. For instance, Sum(x, x) would be
illegal as a pattern, since the pattern variable x occurs twice in it.

Meaning of Pattern Matching. A pattern matching expression

e match { case p; => e; ... case p;, => e, }

matches the patterns py, ..., p, in the order they are written against the selector
value e.

* A constructor pattern C(py, ..., pn) matches all values that are of type C (or a
subtype thereof) and that have been constructed with C-arguments matching
patterns py, ..., Pn-

* A variable pattern x matches any value and binds the variable name to that
value.

* The wildcard pattern ‘_’ matches any value but does not bind a name to that
value.

* A constant pattern C matches a value which is equal (in terms of ==) to C.
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The pattern matching expression rewrites to the right-hand-side of the first case
whose pattern matches the selector value. References to pattern variables are re-
placed by corresponding constructor arguments. If none of the patterns matches,
the pattern matching expression is aborted with a MatchError exception.

Example 6.2.1 Our substitution model of program evaluation extends quite natu-
rally to pattern matching, For instance, here is how eval applied to a simple expres-
sion is re-written:

eval (Sum(Number (1), Number(2)))
-> (by rewriting the application)

Sum(Number (1), Number(2)) match {
case Number(n) => n
case Sum(el, e2) => eval(el) + eval(e2)

-> (by rewriting the pattern match)
eval(Number(1)) + eval(Number(2))
-> (by rewriting the first application)

Number (1) match {

case Number(n) => n

case Sum(el, e2) => eval(el) + eval(e2)
} + eval(Number(2))

-> (by rewriting the pattern match)
1 + eval(Number(2))

>*1+2 >3

Pattern Matching and Methods. In the previous example, we have used pattern
matching in a function which was defined outside the class hierarchy over which it
matches. Of course, it is also possible to define a pattern matching function in that
class hierarchy itself. For instance, we could have defined eval is a method of the
base class Expr, and still have used pattern matching in its implementation:

abstract class Expr {
def eval: Int = this match {
case Number(n) => n
case Sum(el, e2) => el.eval + e2.eval



58 Case Classes and Pattern Matching

Exercise 6.2.2 Consider the following definitions representing trees of integers.
These definitions can be seen as an alternative representation of IntSet:

abstract class IntTree
case object EmptyTree extends IntTree
case class Node(elem: Int, left: IntTree, right: IntTree) extends IntTree

Complete the following implementations of function contains and insert for
IntTree’s.

def contains(t: IntTree, v: Int): Boolean = t match { ...

}
def insert(t: IntTree, v: Int): IntTree = t match { ...

Pattern Matching Anonymous Functions. So far, case-expressions always ap-
peared in conjunction with a match operation. But it is also possible to use case-
expressions by themselves. A block of case-expressions such as

{ case P{ = E; ... case P, => E, }

is seen by itself as a function which matches its arguments against the patterns
Py, ..., P,, and produces the result of one of E, ..., E,. (If no pattern matches, the
function would throw a MatchError exception instead). In other words, the expres-
sion above is seen as a shorthand for the anonymous function

(x = x match { case P, => E; ... case P, == E, })

where x is a fresh variable which is not used otherwise in the expression.



Chapter 7
Generic Types and Methods

Classes in Scala can have type parameters. We demonstrate the use of type parame-
ters with functional stacks as an example. Say, we want to write a data type of stacks
of integers, with methods push, top, pop, and isEmpty. This is achieved by the fol-
lowing class hierarchy:

abstract class IntStack {
def push(x: Int): IntStack = new IntNonEmptyStack(x, this)
def isEmpty: Boolean
def top: Int
def pop: IntStack
}
class IntEmptyStack extends IntStack {
def isEmpty = true
def top = error("EmptyStack.top")
def pop = error("EmptyStack.pop")
}
class IntNonEmptyStack(elem: Int, rest: IntStack) {
def isEmpty = false
def top = elem
def pop = rest

Of course, it would also make sense to define an abstraction for a stack of Strings.
To do that, one could take the existing abstraction for IntStack, rename it to
StringStack and at the same time rename all occurrences of type Int to String.

A better way, which does not entail code duplication, is to parameterize the stack
definitions with the element type. Parameterization lets us generalize from a spe-
cific instance of a problem to a more general one. So far, we have used parameteri-
zation only for values, but it is available also for types. To arrive at a generic version
of Stack, we equip it with a type parameter.
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abstract class Stack[A] {
def push(x: A): Stack[A] = new NonEmptyStack[A](x, this)
def isEmpty: Boolean
def top: A
def pop: Stack[A]
}
class EmptyStack[A] extends Stack[A] {
def isEmpty = true
def top = error("EmptyStack.top")
def pop = error("EmptyStack.pop")
}
class NonEmptyStack[A](elem: A, rest: Stack[A]) extends Stack[A] {
def isEmpty = false
def top = elem
def pop = rest
}

In the definitions above, ‘A’ is a type parameter of class Stack and its subclasses.
Type parameters are arbitrary names; they are enclosed in brackets instead of
parentheses, so that they can be easily distinguished from value parameters. Here
is an example how the generic classes are used:

val x = new EmptyStack[Int]
val v = x.push(1).push(2)
println(y.pop.top)

The first line creates a new empty stack of Int’s. Note the actual type argument
[Int] which replaces the formal type parameter A.

It is also possible to parameterize methods with types. As an example, here is a
generic method which determines whether one stack is a prefix of another.

def isPrefix[A](p: Stack[A], s: Stack[A]): Boolean = {
p.isEmpty ||
p.top == s.top && isPrefix[A](p.pop, s.pop)

3

parameters are called polymorphic. Generic methods are also called polymorphic.
The term comes from the Greek, where it means “having many forms”. To apply a
polymorphic method such as isPrefix, we pass type parameters as well as value
parameters to it. For instance,

val sl = new EmptyStack[String].push("abc")
val s2 = new EmptyStack[String].push("abx").push(sl.top)
println(isPrefix[String](sl, s2))
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Local Type Inference. Passing type parameters such as [Int] or [String] all the
time can become tedious in applications where generic functions are used a lot.
Quite often, the information in a type parameter is redundant, because the correct
parameter type can also be determined by inspecting the function’s value parame-
ters or expected result type. Taking the expression isPrefix[String](sl, s2)asan
example, we know that its value parameters are both of type Stack[String], so we
can deduce that the type parameter must be String. Scala has a fairly powerful type
inferencer which allows one to omit type parameters to polymorphic functions and
constructors in situations like these. In the example above, one could have writ-
ten isPrefix(sl, s2) and the missing type argument [String] would have been
inserted by the type inferencer.

7.1 Type Parameter Bounds

Now that we know how to make classes generic it is natural to generalize some of
the earlier classes we have written. For instance class IntSet could be generalized
to sets with arbitrary element types. Let’s try. The abstract class for generic sets is
easily written.

abstract class Set[A] {
def incl(x: A): Set[A]
def contains(x: A): Boolean

}

However, if we still want to implement sets as binary search trees, we encounter a
problem. The contains and incl methods both compare elements using methods
< and >. For IntSet this was OK, since type Int has these two methods. But for
an arbitrary type parameter a, we cannot guarantee this. Therefore, the previous
implementation of, say, contains would generate a compiler error.

def contains(x: Int): Boolean =
if (x < elem) left contains x
A < not a member of type A.

One way to solve the problem is to restrict the legal types that can be substituted for
type A to only those types that contain methods < and > of the correct types. There is
a trait Ordered[A] in the standard class library Scala which represents values which
are comparable (via < and >) to values of type A. This trait is defined as follows:

/*% A class for totally ordered data. */
trait Ordered[A] {

/#*% Result of comparing ‘this’ with operand ‘that’.
returns ‘x’ where
x<0 iff this < that
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x =0 1iff this == that
x>0 iff this > that

def compare(that: A): Int

def < (that: A): Boolean = (this compare that) < 0
def > (that: A): Boolean = (this compare that) > 0
def <= (that: A): Boolean = (this compare that) <= 0
def >= (that: A): Boolean = (this compare that) >= 0
def compareTo(that: A): Int = compare(that)

}

We can enforce the comparability of a type by demanding that the type is a subtype
of Ordered. This is done by giving an upper bound to the type parameter of Set:

trait Set[A <: Ordered[A]] {
def incl(x: A): Set[A]
def contains(x: A): Boolean

}

The parameter declaration A <: Ordered[A] introduces A as a type parameter
which must be a subtype of Ordered[A], i.e. its values must be comparable to values
of the same type.

With this restriction, we can now implement the rest of the generic set abstraction
as we did in the case of IntSets before.

class EmptySet[A <: Ordered[A]] extends Set[A] {

def contains(x: A): Boolean = false

def incl(x: A): Set[A] = new NonEmptySet(x, new EmptySet[A], new EmptySet[A])
}

class NonEmptySet[A <: Ordered[A]]
(elem: A, left: Set[A], right: Set[A]) extends Set[A] {
def contains(x: A): Boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true
def incl(x: A): Set[A] =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this

Note that we have left out the type argument in the object creations
new NonEmptySet(...).Inthe same way as for polymorphic methods, missing type
arguments in constructor calls are inferred from value arguments and/or the ex-
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pected result type.

Here is an example that uses the generic set abstraction. Let’s first create a subclass
of Ordered, like this:

case class Num(value: Double) extends Ordered[Num] {
def compare(that: Num): Int =
if (this.value < that.value) -1
else if (this.value > that.value) 1
else 0

Then:

val s = new EmptySet[Num].incl(Num(1.0)).inc1(Num(2.0))
s.contains(Num(1.5))

This is OK, as type Num implements the trait Ordered[Num]. However, the following
example is in error.

val s = new EmptySet[java.io.File]
A java.io.File does not conform to type
parameter bound Ordered[java.io.File].

One probem with type parameter bounds is that they require forethought: if we had
not declared Num a subclass of Ordered, we would not have been able to use Num
elements in sets. By the same token, types inherited from Java, such as Int, Double,
or String are not subclasses of Ordered, so values of these types cannot be used as
set elements.

A more flexible design, which admits elements of these types, uses view bounds in-
stead of the plain type bounds we have seen so far. The only change this entails in
the example above is in the type parameters:

trait Set[A <% Ordered[A]]
class EmptySet[A <% Ordered[A]] ...
class NonEmptySet[A <% Ordered[A]]

View bounds <% are weaker than plain bounds <:: A view bounded type parameter
clause [A <% T] only specifies that the bounded type A must be convertible to the
bound type T, using an implicit conversion.

The Scala library predefines implicit conversions for a number of types, including
the primitive types and String. Therefore, the redesign set abstraction can be in-
stantiated with these types as well. More explanations on implicit conversions and
view bounds are given in Section 23.
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7.2 Variance Annotations

The combination of type parameters and subtyping poses some interesting ques-
tions. For instance, should Stack[String] be a subtype of Stack[AnyRef]? Intu-
itively, this seems OK, since a stack of Strings is a special case of a stack of AnyRefs.
More generally, if T is a subtype of type S then Stack[T] should be a subtype of
Stack[S]. This property is called co-variant subtyping.

In Scala, generic types have by default non-variant subtyping. That is, with Stack
defined as above, stacks with different element types would never be in a subtype
relation. However, we can enforce co-variant subtyping of stacks by changing the
first line of the definition of class Stack as follows.

class Stack[+A] {

Prefixing a formal type parameter with a + indicates that subtyping is covariant in
that parameter. Besides +, there is also a prefix - which indicates contra-variant
subtyping. If Stack was defined class Stack[-A] ..., then T a subtype of type S
would imply that Stack[S] is a subtype of Stack[T] (which in the case of stacks
would be rather surprising).

In a purely functional world, all types could be co-variant. However, the situation
changes once we introduce mutable data. Consider the case of arrays in Java or
.NET. Such arrays are represented in Scala by a generic class Array. Here is a partial
definition of this class.

class Array[A] {

def apply(index: Int): A

def update(index: Int, elem: A)
}

The class above defines the way Scala arrays are seen from Scala user programs. The
Scala compiler will map this abstraction to the underlying arrays of the host system
in most cases where this possible.

In Java, arrays are indeed covariant; that is, for reference types T and S, if T is a sub-
type of S, then also Array[T] is a subtype of Array[S]. This might seem natural but
leads to safety problems that require special runtime checks. Here is an example:

val x = new Array[String] (1)
val y: Array[Any] = x
y(0) = new Rational(l, 2) // this is syntactic sugar for
// v.update(0, new Rational(1, 2))

In the first line, a new array of strings is created. In the second line, this array is
bound to a variable y, of type Array[Any]. Assuming arrays are covariant, this is OK,
since Array[String] is a subtype of Array[Any]. Finally, in the last line a rational
number is stored in the array. This is also OK, since type Rational is a subtype of
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the element type Any of the array y. We thus end up storing a rational number in an
array of strings, which clearly violates type soundness.

Java solves this problem by introducing a run-time check in the third line which
tests whether the stored element is compatible with the element type with which
the array was created. We have seen in the example that this element type is not
necessarily the static element type of the array being updated. If the test fails, an
ArrayStoreException is raised.

Scala solves this problem instead statically, by disallowing the second line at
compile-time, because arrays in Scala have non-variant subtyping. This raises the
question how a Scala compiler verifies that variance annotations are correct. If we
had simply declared arrays co-variant, how would the potential problem have been
detected?

Scala uses a conservative approximation to verify soundness of variance annota-
tions. A covariant type parameter of a class may only appear in co-variant posi-
tions inside the class. Among the co-variant positions are the types of values in the
class, the result types of methods in the class, and type arguments to other covariant
types. Not co-variant are types of formal method parameters. Hence, the following
class definition would have been rejected

class Array[+A] {
def apply(index: Int): A
def update(index: Int, elem: A)
A covariant type parameter A
appears in contravariant position.

So far, so good. Intuitively, the compiler was correct in rejecting the update proce-
dure in a co-variant class because update potentially changes state, and therefore
undermines the soundness of co-variant subtyping.

However, there are also methods which do not mutate state, but where a type pa-
rameter still appears contra-variantly. An example is push in type Stack. Again the
Scala compiler will reject the definition of this method for co-variant stacks.

class Stack[+A] {
def push(x: A): Stack[A] =
A covariant type parameter A
appears in contravariant position.

This is a pity, because, unlike arrays, stacks are purely functional data structures and
therefore should enable co-variant subtyping. However, there is a a way to solve the
problem by using a polymorphic method with a lower type parameter bound.
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7.3 Lower Bounds

We have seen upper bounds for type parameters. In a type parameter declaration
suchasT <: U, the type parameter T is restricted to range only over subtypes of type
U. Symmetrical to this are lower bounds in Scala. In a type parameter declaration
T >: S, the type parameter T is restricted to range only over supertypes of type S.
(One can also combine lower and upper bounds, asinT >: S <: U.)

Using lower bounds, we can generalize the push method in Stack as follows.

class Stack[+A] {
def push[B >: A](x: B): Stack[B] = new NonEmptyStack(x, this)

Technically, this solves our variance problem since now the type parameter A ap-
pears no longer as a parameter type of method push. Instead, it appears as lower
bound for another type parameter of a method, which is classified as a co-variant
position. Hence, the Scala compiler accepts the new definition of push.

In fact, we have not only solved the technical variance problem but also have gen-
eralized the definition of push. Before, we were required to push only elements with
types that conform to the declared element type of the stack. Now, we can push also
elements of a supertype of this type, but the type of the returned stack will change
accordingly. For instance, we can now push an AnyRef onto a stack of Strings, but
the resulting stack will be a stack of AnyRefs instead of a stack of Strings!

In summary, one should not hesitate to add variance annotations to your data struc-
tures, as this yields rich natural subtyping relationships. The compiler will detect
potential soundness problems. Even if the compiler’s approximation is too conser-
vative, as in the case of method push of class Stack, this will often suggest a useful
generalization of the contested method.

7.4 Least Types

Scala does not allow one to parameterize objects with types. That’s why we orig-
inally defined a generic class EmptyStack[A], even though a single value denoting
empty stacks of arbitrary type would do. For co-variant stacks, however, one can
use the following idiom:

object EmptyStack extends Stack[Nothing] { ... }

The bottom type Nothing contains no value, so the type Stack[Nothing] expresses
the fact that an EmptyStack contains no elements. Furthermore, Nothing is a sub-
type of all other types. Hence, for co-variant stacks, Stack[Nothing] is a subtype of
Stack[T], for any other type T. This makes it possible to use a single empty stack
object in user code. For instance:
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val s = EmptyStack.push("abc").push(new AnyRef())

Let’s analyze the type assignment for this expression in detail. The EmptyStack ob-
jectis of type Stack[Nothing], which has a method

push[B >: Nothing](elem: B): Stack[B]

Local type inference will determine that the type parameter B should be instanti-
ated to String in the application EmptyStack.push("abc"). The result type of that
application is hence Stack[String], which in turn has a method

push[B >: String](elem: B): Stack[B]

The final part of the value definition above is the application of this method to
new AnyRef(). Local type inference will determine that the type parameter b should
this time be instantiated to AnyRef, with result type Stack[AnyRef]. Hence, the type
assigned to value s is Stack[AnyRef].

Besides Nothing, which is a subtype of every other type, there is also the type Null,
which is a subtype of scala.AnyRef, and every class derived from it. The null lit-
eral in Scala is the only value of that type. This makes null compatible with every
reference type, but not with a value type such as Int.

We conclude this section with the complete improved definition of stacks. Stacks
have now co-variant subtyping, the push method has been generalized, and the
empty stack is represented by a single object.

abstract class Stack[+A] {
def push[B >: A](x: B): Stack[B] = new NonEmptyStack(x, this)
def isEmpty: Boolean
def top: A
def pop: Stack[A]
}
object EmptyStack extends Stack[Nothing] {
def isEmpty = true
def top = error("EmptyStack.top")
def pop = error("EmptyStack.pop")
}
class NonEmptyStack[+A](elem: A, rest: Stack[A]) extends Stack[A] {
def isEmpty = false
def top = elem
def pop = rest

}

Many classes in the Scala library are generic. We now present two commonly used
families of generic classes, tuples and functions. The discussion of another com-
mon class, lists, is deferred to the next chapter.
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7.5 Tuples

Sometimes, a function needs to return more than one result. For instance, take the
function divmod which returns the integer quotient and rest of two given integer
arguments. Of course, one can define a class to hold the two results of divmod, as in:

case class TwoInts(first: Int, second: Int)
def divmod(x: Int, y: Int): TwoIlnts = new TwoInts(x / vy, X % V)

However, having to define a new class for every possible pair of result types is very
tedious. In Scala one can use instead a the generic classes Tuple2, which is defined
as follows:

package scala
case class Tuple2[A, B](_1: A, _2: B)

With Tuple2, the divmod method can be written as follows.

def divmod(x: Int, y: Int) = new Tuple2[Int, Int](x / v, X % V)

As usual, type parameters to constructors can be omitted if they are deducible from
value arguments. There exist also tuple classes for every other number of elements
(the current Scala implementation limits this to tuples of some reasonable number
of elements).

How are elements of tuples accessed? Since tuples are case classes, there are two
possibilities. One can either access a tuple’s fields using the names of the construc-
tor parameters _i, as in the following example:

val xy = divmod(x, V)
println("quotient: "

+x._ 1+ ", rest: " + x._2)

Or one uses pattern matching on tuples, as in the following example:

divmod(x, y) match {
case Tuple2(n, d) =>
println("quotient: " + n + ", rest: " + d)

Note that type parameters are never used in patterns; it would have been illegal to
write case Tuple2[Int, Int](n, d).

Tuples are so convenient that Scala defines special syntax for them. To form a
tuple with n elements xi, ..., X, one can write (xi, ..., X,). This is equivalent to
Tuplen(xy, ..., X,). The (...) syntax works equivalently for types and for patterns.
With that tuple syntax, the divmod example is written as follows:

def divmod(x: Int, y: Int): (Int, Int) = (x /vy, X % V)
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divmod(x, y) match {
case (n, d) => println("quotient: " + n + ", rest: " + d)

}

7.6 Functions

Scala is a functional language in that functions are first-class values. Scala is also an
object-oriented language in that every value is an object. It follows that functions
are objects in Scala. For instance, a function from type String to type Int is repre-
sented as an instance of the trait Functionl[String, Int]. The Functionl trait is
defined as follows.

package scala

trait Functionl[-A, +B] {
def apply(x: A): B

}

Besides Functionl, there are also definitions of for functions of all other arities (the
current implementation implements this only up to a reasonable limit). That is,
there is one definition for each possible number of function parameters. Scala’s
function type syntax (T1,..., T,) => S is simply an abbreviation for the parame-
terized type Functionn[Ty,..., Ty, S1.

Scala uses the same syntax f(x) for function application, no matter whether f is a
method or a function object. This is made possible by the following convention: A
function application f(x) where f is an object (as opposed to a method) is taken
to be a shorthand for f.apply(x). Hence, the apply method of a function type is
inserted automatically where this is necessary.

That’s also why we defined array subscripting in Section 7.2 by an apply method.
For any array a, the subscript operation a(i) is taken to be a shorthand for
a.apply(i).

Functions are an example where a contra-variant type parameter declaration is use-
ful. For example, consider the following code:

val f: (AnyRef => Int) = x => x.hashCode()
val g: (String => Int) = f
g("abC")

It's sound to bind the value g of type String => Int to f, which is of type
AnyRef => Int. Indeed, all one can do with function of type String => Int is pass
it a string in order to obtain an integer. Clearly, the same works for function f: If we
pass it a string (or any other object), we obtain an integer. This demonstrates that
function subtyping is contra-variant in its argument type whereas it is covariant in
its result type. In short, S = T is a subtype of S’ = T’, provided S’ is a subtype of S
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and T is a subtype of 7.

Example 7.6.1 Consider the Scala code

val plusl: (Int => Int) = (x: Int) = x+ 1
plusl(2)

This is expanded into the following object code.

val plusl: Functionl[Int, Int] = new Functionl[Int, Int] {
def apply(x: Int): Int = x + 1

}

plusl.apply(2)

Here, the object creation new Functionl[Int, Int]{ ... }representsan instance
of an anonymous class. It combines the creation of a new Functionl object with an
implementation of the apply method (which is abstract in Functionl). Equivalently,
but more verbosely, one could have used a local class:

val plusl: Functionl[Int, Int] = {
class Local extends Functionl[Int, Int] {
def apply(x: Int): Int = x + 1
}
new Local: Functionl[Int, Int]

}
plusl.apply(2)



Chapter 8
Lists

Lists are an important data structure in many Scala programs. A list containing the

elements xy, ..., X, is written List(x;, ..., X,). Examples are:
val fruit = List("apples", "oranges", "pears")
val nums = List(1, 2, 3, 4)
val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))
val empty = List()

Lists are similar to arrays in languages such as C or Java, but there are also three
important differences. First, lists are immutable. That is, elements of a list cannot
be changed by assignment. Second, lists have a recursive structure, whereas arrays
are flat. Third, lists support a much richer set of operations than arrays usually do.

8.1 Using Lists

The List type. Like arrays, lists are homogeneous. That is, the elements of a list all
have the same type. The type of a list with elements of type T is written List[T]
(compare to T[] in Java).

List("apples", "oranges", "pears")

List(1, 2, 3, 4)

List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))
List()

val fruit: List[String]
val nums : List[Int]

val diag3: List[List[Int]]
val empty: List[Int]

List constructors. All lists are built from two more fundamental constructors, Nil
and :: (pronounced “cons”). Nil represents an empty list. The infix operator : :
expresses list extension. That is, x :: xs represents a list whose first element is x,
which is followed by (the elements of) list xs. Hence, the list values above could also
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have been defined as follows (in fact their previous definition is simply syntactic
sugar for the definitions below).

val fruit = "apples" :: ("oranges" :: ("pears" :: Nil))
val nums 1:: (2 :: (3 :: (4 ::NiD))

val diag3 = (1 :: (0 :: (0O :: Nil))) ::
(0 :: (X :: (0 :: Nil))) ::
(0 :: (0 :: (1 :: Nil))) :: Nil
val empty = Nil
The ‘::” operation associates to the right: A :: B :: C is interpreted as
A :: (B :: C). Therefore, we can drop the parentheses in the definitions above.

For instance, we can write shorter

val nums = 1 :: 2 :: 3 :: 4 :: Nil

Basic operations on lists. All operations on lists can be expressed in terms of the
following three:

head returns the first element of a list,

tail returns the list consisting of all elements except the
first element,

isEmpty returns true iff the list is empty

These operations are defined as methods of list objects. So we invoke them by se-
lecting from the list that’s operated on. Examples:

empty.isEmpty = true
fruit.isEmpty = false
fruit.head = "apples"
fruit.tail.head = "oranges"
diag3.head = List(1, 0, 0)

The head and tail methods are defined only for non-empty lists. When selected
from an empty list, they throw an exception.

As an example of how lists can be processed, consider sorting the elements of a list
of numbers into ascending order. One simple way to do so is insertion sort, which
works as follows: To sort a non-empty list with first element x and rest xs, sort the
remainder xs and insert the element x at the right position in the result. Sorting an
empty list will yield the empty list. Expressed as Scala code:

def isort(xs: List[Int]): List[Int] =
if (xs.isEmpty) Nil
else insert(xs.head, isort(xs.tail))

Exercise 8.1.1 Provide an implementation of the missing function insert.
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List patterns. In fact, :: is defined as a case class in Scala’s standard library.
Hence, it is possible to decompose lists by pattern matching, using patterns com-
posed from the Nil and : : constructors. For instance, isort can be written alterna-
tively as follows.

def isort(xs: List[Int]): List[Int] = xs match {
case List() => List()
case X :: xsl => insert(x, isort(xsl))

where

def insert(x: Int, xs: List[Int]): List[Int] = xs match {
case List() => List(x)
case y :: ys = if (x <=y) x :: xs else y :: insert(x, ys)

}

8.2 Definition of class List I: First Order Methods

Lists are not built in in Scala; they are defined by an abstract class List, which comes
with two subclasses for : : and Nil. In the following we present a tour through class
List.

package scala
abstract class List[+A] {

List is an abstract class, so one cannot define elements by calling the empty List
constructor (e.g. by new List). The class has a type parameter a. It is co-variant
in this parameter, which means that List[S] <: List[T] for all types S and T such
thatS <: T. The class is situated in the package scala. This is a package containing
the most important standard classes of Scala. List defines a number of methods,
which are explained in the following.

Decomposing lists. First, there are the three basic methods isEmpty, head, tail.
Their implementation in terms of pattern matching is straightforward:

def isEmpty: Boolean = this match {
case Nil => true
case x :: xs => false

}

def head: A = this match {
case Nil => error("Nil.head")
case X :: XS => X

}

def tail: List[A] = this match {
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case Nil => error("Nil.tail")
case X :: XS => XS

The next function computes the length of a list.

def length: Int = this match {
case Nil => 0
case X :: Xxs => 1 + xs.length

Exercise 8.2.1 Design a tail-recursive version of length.

The next two functions are the complements of head and tail.
def last: A
def init: List[A]

xs.last returns the last element of list xs, whereas xs.init returns all elements of
xs except the last. Both functions have to traverse the entire list, and are thus less
efficient than their head and tail analogues. Here is the implementation of 1ast.

def last: A = this match {

case Nil => error("Nil.last")
case X :: Nil => x
case X :: Xs => xs.last

The implementation of init is analogous.
The next three functions return a prefix of the list, or a suffix, or both.

def take(n: Int): List[A] =
if (n == 0 || isEmpty) Nil else head :: tail.take(n-1)

def drop(n: Int): List[A] =
if (n == 0 || isEmpty) this else tail.drop(n-1)

def split(n: Int): (List[A], List[A]) = (take(n), drop(n))

(xs take n) returns the first n elements of list xs, or the whole list, if its length is
smaller than n. (xs drop n) returns all elements of xs except the n first ones. Fi-
nally, (xs split n) returns a pair consisting of the lists resulting from xs take n
and xs drop n.

The next function returns an element at a given index in a list. It is thus analogous
to array subscripting. Indices start at 0.
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def apply(n: Int): A = drop(n).head

The apply method has a special meaning in Scala. An object with an apply method
can be applied to arguments as if it was a function. For instance, to pick the 3'rd
element of a list xs, one can write either xs.apply(3) or xs(3) —the latter expression
expands into the first.

With take and drop, we can extract sublists consisting of consecutive elements of
the original list. To extract the sublist xs,;,, ..., xs,-1 of a list xs, use:

xs.drop(m) .take(n - m)

Zipping lists. The next function combines two lists into a list of pairs. Given two
lists

xs = List(xy, ..., X5) ,and
ys = List(yi, ---5 Vn)
xs zip ys constructs thelist List((x1, v1), ..., (X5, vpn)). Ifthe two lists have

different lengths, the longer one of the two is truncated. Here is the definition of zip
—note that it is a polymorphic method.

def zip[B](that: List[B]): List[(a,b)] =
if (this.isEmpty || that.isEmpty) Nil
else (this.head, that.head) :: (this.tail zip that.tail)

Consing lists.. Like any infix operator, :: is also implemented as a method of an
object. In this case, the object is the list that is extended. This is possible, because
operators ending with a ‘:’ character are treated specially in Scala. All such opera-
tors are treated as methods of their right operand. E.g.,

X 11y =vy.::(x) whereas X + vy = xX.+(y)

Note, however, that operands of a binary operation are in each case evaluated from
left to right. So, if D and E are expressions with possible side-effects, D :: E is
translated to {val x = D; E.::(x)} in order to maintain the left-to-right order of
operand evaluation.

Another difference between operators ending in a ‘:’ and other operators concerns
their associativity. Operators ending in ‘:” are right-associative, whereas other op-
erators are left-associative. E.g.,

X :ry:i:rz=x2::(y ::2z) whereas X+vy+z=&X+vVy)+2z

The definition of : : as a method in class List is as follows:
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def ::[B >: A](x: B): List[B] = new scala.::(x, this)

Note that : : is defined for all elements x of type B and lists of type List[A] such that
the type B of x is a supertype of the list’s element type A. The result is in this case a list

of B’s. This is expressed by the type parameter B with lower bound A in the signature
of ::.

Concatenatinglists. An operation similar to : : is list concatenation, written ‘: : :".
The result of (xs ::: ys) is a list consisting of all elements of xs, followed by all
elements of ys. Because it ends in a colon, : : : is right-associative and is considered
as a method of its right-hand operand. Therefore,

XS 1::ys ::: 28 = xS ::: (ysS ::: zS)
= zs.:::(ys).:::(xs)

Here is the implementation of the : : : method:

def :::[B >: A](prefix: List[B]): List[B] = prefix match {
case Nil => this
case p :: ps => this.:::(ps).::(p)

3

Reversing lists. Another useful operation is list reversal. There is a method
reverse in List to that effect. Let’s try to give its implementation:

def reverse[A](xs: List[A]): List[A] = xs match {
case Nil => Nil
case X :: XS => reverse(xs) ::: List(x)

This implementation has the advantage of being simple, but it is not very efficient.
Indeed, one concatenation is executed for every element in the list. List concatena-
tion takes time proportional to the length of its first operand. Therefore, the com-
plexity of reverse(xs) is

n+n-1)+..+1=nn+1)/2

where 7 is the length of xs. Can reverse be implemented more efficiently? We will
see later that there exists another implementation which has only linear complexity.

8.3 Example: Merge sort

The insertion sort presented earlier in this chapter is simple to formulate, but also
not very efficient. It's average complexity is proportional to the square of the length
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of the input list. We now design a program to sort the elements of a list which is
more efficient than insertion sort. A good algorithm for this is merge sort, which
works as follows.

First, if the list has zero or one elements, it is already sorted, so one returns the
list unchanged. Longer lists are split into two sub-lists, each containing about half
the elements of the original list. Each sub-list is sorted by a recursive call to the sort
function, and the resulting two sorted lists are then combined in a merge operation.

For a general implementation of merge sort, we still have to specify the type of list
elements to be sorted, as well as the function to be used for the comparison of el-
ements. We obtain a function of maximal generality by passing these two items as
parameters. This leads to the following implementation.

def msort[A](less: (A, A) => Boolean)(xs: List[A]): List[A] = {

def merge(xsl: List[A], xs2: List[A]): List[A] =
if (xsl.isEmpty) xs2
else if (xs2.isEmpty) xsl
else if (less(xsl.head, xs2.head)) xsl.head :: merge(xsl.tail, xs2)
else xs2.head :: merge(xsl, xs2.tail)

val n = xs.length/2

if (n == 0) xs

else merge(msort(less)(xs take n), msort(less)(xs drop n))

}

The complexity of msort is O(N log(N)), where N is the length of the input list. To
see why, note that splitting a list in two and merging two sorted lists each take time
proportional to the length of the argument list(s). Each recursive call of msort halves
the number of elements in its input, so there are O(log(IN)) consecutive recursive
calls until the base case of lists of length 1 is reached. However, for longer lists each
call spawns off two further calls. Adding everything up we obtain that at each of
the O(log(N)) call levels, every element of the original lists takes part in one split
operation and in one merge operation. Hence, every call level has a total cost pro-
portional to O(NN). Since there are O(log(N)) call levels, we obtain an overall cost
of O(N log(N)). That cost does not depend on the initial distribution of elements
in the list, so the worst case cost is the same as the average case cost. This makes
merge sort an attractive algorithm for sorting lists.

Here is an example how msort is used.

msort((x: Int, y: Int) => x < y)(List(5, 7, 1, 3))

The definition of msort is curried, to make it easy to specialize it with particular
comparison functions. For instance,

val intSort = msort((x: Int, y: Int) => x <vy)
val reverseSort = msort((x: Int, y: Int) => x > vy)
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8.4 Definition of class List Il: Higher-Order Methods

The examples encountered so far show that functions over lists often have similar
structures. We can identify several patterns of computation over lists, like:

* transforming every element of a list in some way.
e extracting from a list all elements satisfying a criterion.

* combine the elements of a list using some operator.

Functional programming languages enable programmers to write general functions
which implement patterns like this by means of higher order functions. We now
discuss a set of commonly used higher-order functions, which are implemented as
methods in class List.

Mapping over lists. A common operation is to transform each element of a list
and then return the lists of results. For instance, to scale each element of a list by a
given factor.

def scalelist(xs: List[Double], factor: Double): List[Double] = xs match {
case Nil => xs
case X :: xsl => x * factor :: scalelist(xsl, factor)

This pattern can be generalized to the map method of class List:

abstract class List[A] { ...
def map[B](f: A => B): List[B] = this match {
case Nil => this
case X :: xs = f(x) :: xs.map(f)

Using map, scaleList can be more concisely written as follows.

def scalelist(xs: List[Double], factor: Double) =
xs map (x => x * factor)

As another example, consider the problem of returning a given column of a matrix
which is represented as a list of rows, where each row is again a list. This is done by
the following function column.

def column[A](xs: List[List[A]], index: Int): List[A] =
xs map (row => row(index))

Closely related to map is the foreach method, which applies a given function to all
elements of a list, but does not construct a list of results. The function is thus applied
only for its side effect. foreach is defined as follows.
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def foreach(f: A => Unit) {
this match {
case Nil => {}
case X :: xs => f(x); xs.foreach(f)

This function can be used for printing all elements of a list, for instance:

xs foreach (x => println(x))

Exercise 8.4.1 Consider a function which squares all elements of a list and re-
turns a list with the results. Complete the following two equivalent definitions of
squarelist.

def squarelist(xs: List[Int]): List[Int] = xs match {
case List() => ??

case y :: ys => ??

}

def squarelist(xs: List[Int]): List[Int] =
XS map ?7?

Filtering Lists. Another common operation selects from a list all elements fulfill-
ing a given criterion. For instance, to return a list of all positive elements in some
given lists of integers:

def posElems(xs: List[Int]): List[Int] = xs match {
case Nil => xs
case X :: xs1 => if (x > 0) x :: posElems(xsl) else posElems(xsl)

This pattern is generalized to the filter method of class List:

def filter(p: A => Boolean): List[A] = this match {
case Nil => this
case x :: xs = if (p(x)) x :: xs.filter(p) else xs.filter(p)

Using filter, posElems can be more concisely written as follows.

def posElems(xs: List[Int]): List[Int] =
xs filter (x => x > 0)

An operation related to filtering is testing whether all elements of a list satisfy a cer-
tain condition. Dually, one might also be interested in the question whether there
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exists an element in a list that satisfies a certain condition. These operations are
embodied in the higher-order functions forall and exists of class List.

def forall(p: A => Boolean): Boolean =
isEmpty || (p(head) && (tail forall p))

def exists(p: A => Boolean): Boolean =
lisEmpty && (p(head) || (tail exists p))

To illustrate the use of forall, consider the question whether a number if prime.
Remember that a number 7 is prime of it can be divided without remainder only
by one and itself. The most direct translation of this definition would test that n
divided by all numbers from 2 up to and excluding itself gives a non-zero remainder.
This list of numbers can be generated using a function List .range which is defined
in object List as follows.

package scala
object List { ...
def range(from: Int, end: Int): List[Int] =
if (from >= end) Nil else from :: range(from + 1, end)

For example, List.range(2, n) generates the list of all integers from 2 up to and
excluding n. The function isPrime can now simply be defined as follows.

def isPrime(n: Int) =
List.range(2, n) forall (x => n % x != 0)

We see that the mathematical definition of prime-ness has been translated directly
into Scala code.

Exercise: Define forall and exists in terms of filter.

Folding and Reducing Lists. Another common operation is to combine the ele-
ments of a list with some operator. For instance:

sum(List(x1, ..., Xp)) = 0+ X + ... + Xp
product(List(xy, ..., Xp)) = 1 * X3 * ... * Xp

Of course, we can implement both functions with a recursive scheme:

def sum(xs: List[Int]): Int = xs match {
case Nil => 0
case y :: yS => y + sum(ys)

}

def product(xs: List[Int]): Int = xs match {
case Nil => 1
case y :: ys => y * product(ys)

}
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But we can also use the generalization of this program scheme embodied in the
reduceLeft method of class List. This method inserts a given binary operator be-
tween adjacent elements of a given list. E.g.

List(x;, ..., Xp).reducelLeft(op) = (...(x]; Oop X2) Op ... ) Op Xy

Using reduceLeft, we can make the common pattern in sum and product apparent:

def sum(xs: List[Int])
def product(xs: List[Int])

(0 :: xs) reduceleft {(x, yv) => x + V}
(1 :: xs) reduceleft {(x, yv) => x * V}

Here is the implementation of reduceLeft.

def reduceLeft(op: (A, A) => A): A = this match {
case Nil => error("Nil.reduceLeft")
case X :: xs => (xs foldLeft x)(op)

}
def foldLeft[B](z: B)(op: (B, A) => B): B = this match {
case Nil => z
case X :: xs = (xs foldLeft op(z, x))(op)
}
}

We see that the reduceLeft method is defined in terms of another generally use-
ful method, foldLeft. The latter takes as additional parameter an accumulator z,
which is returned when foldLeft is applied on an empty list. That is,

(List(x;, ..., xp) foldLeft z)(op) = (...(zopx1) Op ... ) op Xy

The sum and product methods can be defined alternatively using foldLeft:

def sum(xs: List[Int])
def product(xs: List[Int])

(xs foldLeft 0) {(x, V) => X + Vy}
(xs foldLeft 1) {(x, V) => X * y}

FoldRight and ReduceRight. Applications of foldLeft and reduceLeft expand to
left-leaning trees. . They have duals foldRight and reduceRight, which produce
right-leaning trees.

List(x;, ..., Xp).reduceRight(op)
(List(x;, ..., Xp,) foldRight acc) (op)

x1 0p (... (X1 Op X5)...)
X1 op (... (x5, op acc)...)

These are defined as follows.

def reduceRight(op: (A, A) => A): A
case Nil => error('Nil.reduceRight")
case X :: Nil => x
case X :: Xs => op(x, xs.reduceRight(op))

this match {
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}

def foldRight[B](z: B)(op: (A, B) => B): B = this match {
case Nil => z
case x :: xs => op(x, (xs foldRight z)(op))

}

Class List defines also two symbolic abbreviations for foldLeft and foldRight:

def /:[B](z: B)(f: (B, A) => B): B
def :\[B](z: B)(f: (A, B) => B): B

foldLeft(z) ()
foldRight(z) (f)

The method names picture the left/right leaning trees of the fold operations by for-
ward or backward slashes. The : points in each case to the list argument whereas
the end of the slash points to the accumulator (or: zero) argument z. That is,

(z /: List(xy, ..., x5))(op)
(List(x1, ..., Xp) :\ z)(op)

(...(zopx1) op ... ) op xp
x10op (... (x5, op acc)...)

For associative and commutative operators, /: and :\ are equivalent (even though
there may be a difference in efficiency).

Exercise 8.4.2 Consider the problem of writing a function flatten, which takes a
list of element lists as arguments. The result of f1atten should be the concatenation
of all element lists into a single list. Here is the an implementation of this method
in terms of :\.

def flatten[A](xs: List[List[A]]): List[A] =
(xs :\ (Nil: List[A])) {(x, xS) => x ::: XS}

Consider replacing the body of flatten by

((Nil: List[A]) /: xs) ((xs, X) => XS ::: X)

What would be the difference in asymptotic complexity between the two versions
of flatten?

In fact flatten is predefined together with a set of other userful function in an ob-
ject called List in the standatd Scala library. It can be accessed from user program
by calling List.flatten. Note that flatten is not a method of class List — it would
not make sense there, since it applies only to lists of lists, not to all lists in general.

List Reversal Again. We have seen in Section 8.2 an implementation of method
reverse whose run-time was quadratic in the length of the list to be reversed. We
now develop a new implementation of reverse, which has linear cost. The idea is
to use a foldLeft operation based on the following program scheme.

class List[+A] { ...
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def reverse: List[A] = (z? /: this)(op?)

It only remains to fill in the z? and op? parts. Let’s try to deduce them from examples.

Nil
= Nil.reverse // by specification
= (z /: Nil)(op) // by the template for reverse
= (Nil foldLeft z)(op) // by the definition of /:
=z // by definition of foldLeft

Hence, z? must be Nil. To deduce the second operand, let’s study reversal of a list
oflength one.

List(x)
= List(x).reverse // by specification
= (Nil /: List(x))(op) // by the template for reverse, with z = Nil
= (List(x) foldLeft Nil)(op) // by the definition of /:
= op(Nil, x) // by definition of foldLeft

Hence, op(Nil, x) equals List(x), which is the same as x :: Nil. This suggests
to take as op the :: operator with its operands exchanged. Hence, we arrive at the
following implementation for reverse, which has linear complexity.

def reverse: List[A] =
((Nil: List[A]) /: this) {(xs, x) => x :: XS}

(Remark: The type annotation of Nil is necessary to make the type inferencer work.)

Exercise 8.4.3 Fill in the missing expressions to complete the following definitions
of some basic list-manipulation operations as fold operations.

def mapFun[A, B](xs: List[A], f: A => B): List[B] =
(xs :\ List[B]()){ ?? }

def lengthFun[A](xs: List[A]): int =
(0 /: xs){ ?? }

Nested Mappings. We can employ higher-order list processing functions to ex-
press many computations that are normally expressed as nested loops in imperative
languages.

As an example, consider the following problem: Given a positive integer 7, find all
pairs of positive integers i and j, where 1 < j < i < n such that i + j is prime. For
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instance, if n = 7, the pairs are

A natural way to solve this problem consists of two steps. In a first step, one gener-
ates the sequence of all pairs (i, j) of integers such that 1 < j < i < n. In a second
step one then filters from this sequence all pairs (i, j) such that i + j is prime.

Looking at the first step in more detail, a natural way to generate the sequence of
pairs consists of three sub-steps. First, generate all integers between 1 and n for i.

Second, for each integer i between 1 and n, generate the list of pairs (i,1) up to
(i,i—1). This can be achieved by a combination of range and map:

List.range(1, i) map (x => (i, X))

Finally, combine all sublists using foldRight with :: :. Putting everything together
gives the following expression:

List.range(1, n)
.map(i => List.range(1l, i).map(x => (i, x)))
.foldRight (List[(Int, Int)]()) {(xs, ys) => Xs ::: ysS}
.filter(pair => isPrime(pair._1 + pair._2))

Flattening Maps. The combination of mapping and then concatenating sublists
resulting from the map is so common that we there is a special method for it in class
List:

abstract class List[+A] { ...
def flatMap[B](f: A => List[B]): List[B] = this match {
case Nil => Nil
case X :: xs = f(x) ::: (xs flatMap f)
}
3

With flatMap, the pairs-whose-sum-is-prime expression could have been written
more concisely as follows.

List.range(1, n)
.flatMap(i => List.range(1l, i).map(x => (i, x)))
.filter(pair => isPrime(pair._1 + pair._2))
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8.5 Summary

This chapter has ingtroduced lists as a fundamental data structure in programming.
Since lists are immutable, they are a common data type in functional programming
languages. They play there a role comparable to arrays in imperative languages.
However, the access patterns between arrays and lists are quite different. Where
array accessing is always done by indexing, this is much less common for lists. We
have seen that scala.List defines a method called apply for indexing however this
operation is much more costly than in the case of arrays (linear as opposed to con-
stant time). Instead of indexing, lists are usually traversed recursively, where re-
cursion steps are usually based on a pattern match over the traversed list. There is
also a rich set of higher-order combinators which allow one to instantiate a set of
predefined patterns of computations over lists.






Chapter 9
For-Comprehensions

The last chapter demonstrated that higher-order functions such as map, flatMap,
filter provide powerful constructions for dealing with lists. But sometimes the
level of abstraction required by these functions makes a program hard to under-
stand.

To help understandability, Scala has a special notation which simplifies common
patterns of applications of higher-order functions. This notation builds a bridge
between set-comprehensions in mathematics and for-loops in imperative lan-
guages such as C or Java. It also closely resembles the query notation of relational
databases.

As a first example, say we are given a list persons of persons with name and age fields.
To print the names of all persons in the sequence which are aged over 20, one can
write:

for (p <- persons if p.age > 20) yield p.name
This is equivalent to the following expression , which uses higher-order functions
filter and map:

persons filter (p => p.age > 20) map (p => p.name)

The for-comprehension looks a bit like a for-loop in imperative languages, except
that it constructs a list of the results of all iterations.

Generally, a for-comprehension is of the form

for ( s ) yield e

Here, s is a sequence of generators, definitions and filters. A generator is of the form
val x <- e, where eis alist-valued expression. It binds x to successive values in the
list. A definitionis of the formval x = e. Itintroduces x as a name for the value of e
in the rest of the comprehension. A filter is an expression f of type Boolean. It omits
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from consideration all bindings for which f is false. The sequence s starts in each
case with a generator. If there are several generators in a sequence, later generators
vary more rapidly than earlier ones.

The sequence s may also be enclosed in braces instead of parentheses, in which
case the semicolons between generators, definitions and filters can be omitted.

Here are two examples that show how for-comprehensions are used. First, let’s redo
an example of the previous chapter: Given a positive integer n, find all pairs of
positive integers i and j, where 1 < j < i < n such that i + j is prime. With a for-
comprehension this problem is solved as follows:

for { i <- List.range(1, n)
j <- List.range(1, i)
if isPrime(i+j) } yield {i, j}

This is arguably much clearer than the solution using map, flatMap and filter that
we have developed previously.

As a second example, consider computing the scalar product of two vectors xs and
ys. Using a for-comprehension, this can be written as follows.

sum(for ((x, y) <- xs zip ys) yield x = y)

9.1 The N-Queens Problem

For-comprehensions are especially useful for solving combinatorial puzzles. An ex-
ample of such a puzzle is the 8-queens problem: Given a standard chess-board,
place 8 queens such that no queen is in check from any other (a queen can check
another piece if they are on the same column, row, or diagonal). We will now de-
velop a solution to this problem, generalizing it to chess-boards of arbitrary size.
Hence, the problem is to place n queens on a chess-board of size n x n.

To solve this problem, note that we need to place a queen in each row. So we could
place queens in successive rows, each time checking that a newly placed queen is
not in check from any other queens that have already been placed. In the course of
this search, it might arrive that a queen to be placed in row k would be in check in
all fields of that row from queens in row 1 to k — 1. In that case, we need to abort
that part of the search in order to continue with a different configuration of queens
in columns 1 to k- 1.

This suggests a recursive algorithm. Assume that we have already generated all so-
lutions of placing k — 1 queens on a board of size n x n. We can represent each such
solution by a list of length k — 1 of column numbers (which can range from 1 to
n). We treat these partial solution lists as stacks, where the column number of the
queen in row k — 1 comes first in the list, followed by the column number of the
queen in row k — 2, etc. The bottom of the stack is the column number of the queen
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placed in the first row of the board. All solutions together are then represented as a
list of lists, with one element for each solution.

Now, to place the k’the queen, we generate all possible extensions of each previous
solution by one more queen. This yields another list of solution lists, this time of
length k. We continue the process until we have reached solutions of the size of the
chess-board n. This algorithmic idea is embodied in function placeQueens below:

def queens(n: Int): List[List[Int]] = {
def placeQueens(k: Int): List[List[Int]] =
if (k == 0) List(List())
else for { queens <- placeQueens(k - 1)
column <- List.range(l, n + 1)
if isSafe(column, queens, 1) } yield column :: queens
placeQueens(n)

}

Exercise 9.1.1 Write the function

def isSafe(col: Int, queens: List[Int], delta: Int): Boolean

which tests whether a queen in the given column col is safe with respect to the
queens already placed. Here, delta is the difference between the row of the queen
to be placed and the row of the first queen in the list.

9.2 Querying with For-Comprehensions

The for-notation is essentially equivalent to common operations of database query
languages. For instance, say we are given a database books, represented as a list of
books, where Book is defined as follows.

case class Book(title: String, authors: List[String])

Here is a small example database:

val books: List[Book] = List(
Book("Structure and Interpretation of Computer Programs",
List("Abelson, Harold", "Sussman, Gerald J.")),
Book("Principles of Compiler Design",
List("Aho, Alfred", "Ullman, Jeffrey")),
Book("Programming in Modula-2",
List("Wirth, Niklaus")),
Book("Introduction to Functional Programming"),
List("Bird, Richard")),
Book("The Java Language Specification",
List("Gosling, James", "Joy, Bill", "Steele, Guy", "Bracha, Gilad")))
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Then, to find the titles of all books whose author’s last name is “Ullman”:

for (b <- books; a <- b.authors if a startsWith "Ullman")
yield b.title

(Here, startsWith is a method in java.lang.String). Or, to find the titles of all
books that have the string “Program” in their title:

for (b <- books if (b.title indexOf "Program") >= 0)
yield b.title

Or, to find the names of all authors that have written at least two books in the
database.

for (bl <- books; b2 <- books if bl != b2;
al <- bl.authors; a2 <- b2.authors if al == a2)
yield al

The last solution is not yet perfect, because authors will appear several times in the
list of results. We still need to remove duplicate authors from result lists. This can
be achieved with the following function.

def removeDuplicates[A](xs: List[A]): List[A] =
if (xs.isEmpty) xs
else xs.head :: removeDuplicates(xs.tail filter (x => x != xs.head))

Note that the last expression in method removeDuplicates can be equivalently ex-
pressed using a for-comprehension.

xs.head :: removeDuplicates(for (x <- xs.tail if x != xs.head) yield x)

9.3 Translation of For-Comprehensions
Every for-comprehension can be expressed in terms of the three higher-order func-

tions map, flatMap and filter. Here is the translation scheme, which is also used
by the Scala compiler.

* A simple for-comprehension

for (x <- e) yield e’

is translated to

e.map(x => e’)

e Afor-comprehension
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for (x <- e if f; s) yield e’
where f is a filter and s is a (possibly empty) sequence of generators or filters
is translated to

for (x <- e.filter(x => f); s) yield e’

and then translation continues with the latter expression.
* A for-comprehension

for (x <- e; y <- e’; s) yield e’’

where s is a (possibly empty) sequence of generators or filters is translated to

e.flatMap(x => for (y <- e’; s) yield e’’)
and then translation continues with the latter expression.

For instance, taking our "pairs of integers whose sum is prime" example:

for { i <- range(1, n)
j <- range(1, i)
if isPrime(i+j)

} vield {i, j}

Here is what we get when we translate this expression:

range(1l, n)
.flatMap(i =>
range(1l, i)
.filter(j => isPrime(i+j))
.map(j => (i, Jj)))

Conversely, it would also be possible to express functions map, flatMap and filter
using for-comprehensions. Here are the three functions again, this time imple-
mented using for-comprehensions.

object Demo {
def map[A, B](xs: List[A], f: A => B): List[B] =
for (x <- xs) yield f(x)

def flatMap[A, B](xs: List[A], f: A => List[B]): List[B] =
for (x <- xs; yv <- f(x)) yield y

def filter[A]l(xs: List[A], p: A => Boolean): List[A] =
for (x <- xs if p(x)) yield x
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Not surprisingly, the translation of the for-comprehension in the body of Demo . map
will produce a call to map in class List. Similarly, Demo.flatMap and Demo.filter
translate to flatMap and filter in class List.

Exercise 9.3.1 Define the following function in terms of for.

def flatten[A](xss: List[List[A]]): List[A] =
(xss :\ (Nil: List[A])) ((xs, ysS) => XS ::: yS)

Exercise 9.3.2 Translate

for (b <- books; a <- b.authors if a startsWith "Bird") yield b.title
for (b <- books if (b.title indexOf "Program") >= 0) yield b.title

to higher-order functions.

9.4 For-Loops

For-comprehensions resemble for-loops in imperative languages, except that they
produce a list of results. Sometimes, a list of results is not needed but we would
still like the flexibility of generators and filters in iterations over lists. This is made
possible by a variant of the for-comprehension syntax, which expresses for-loops:

for (s ) e

This construct is the same as the standard for-comprehension syntax except that
the keyword yield is missing. The for-loop is executed by executing the expression
e for each element generated from the sequence of generators and filters s.

As an example, the following expression prints out all elements of a matrix repre-
sented as a list of lists:

for (xs <- xss) {
for (x <- xs) print(x + "\t")
println()

}

The translation of for-loops to higher-order methods of class List is similar to
the translation of for-comprehensions, but is simpler. Where for-comprehensions
translate to map and flatMap, for-loops translate in each case to foreach.

9.5 Generalizing For

We have seen that the translation of for-comprehensions only relies on the presence
of methods map, flatMap, and filter. Therefore it is possible to apply the same
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notation to generators that produce objects other than lists; these objects only have
to support the three key functions map, flatMap, and filter.

The standard Scala library has several other abstractions that support these three
methods and with them support for-comprehensions. We will encounter some of
them in the following chapters. As a programmer you can also use this principle to
enable for-comprehensions for types you define — these types just need to support
methods map, flatMap, and filter.

There are many examples where this is useful: Examples are database interfaces,
XML trees, or optional values. We will see in Chapter 14.2 how for-comprehensions
can be used in the definition of parsers for context-free grammars that construct
abstract syntax trees.

One caveat: It is not assured automatically that the result translating a for-
comprehension is well-typed. To ensure this, the types of map, flatMap and filter
have to be essentially similar to the types of these methods in class List.

To make this precise, assume you have a parameterized class C[A] for which you
want to enable for-comprehensions. Then C should define map, flatMap and filter
with the following types:

def map[B](f: A => B): C[B]
def flatMap[B](f: A => C[B]): C[B]
def filter(p: A => Boolean): C[A]

It would be attractive to enforce these types statically in the Scala compiler, for
instance by requiring that any type supporting for-comprehensions implements a
standard trait with these methods !. The problem is that such a standard trait would
have to abstract over the identity of the class C, for instance by taking C as a type pa-
rameter. Note that this parameter would be a type constructor, which gets applied
to several different types in the signatures of methods map and flatMap. Unfortu-
nately, the Scala type system is too weak to express this construct, since it can han-
dle only type parameters which are fully applied types.

In the programming language Haskell, which has similar constructs, this abstraction is called a
“monad with zero”






Chapter 10
Mutable State

Most programs we have presented so far did not have side-effects !. Therefore, the
notion of time did not matter. For a program that terminates, any sequence of ac-
tions would have led to the same result! This is also reflected by the substitution
model of computation, where a rewrite step can be applied anywhere in a term,
and all rewritings that terminate lead to the same solution. In fact, this confluence
property is a deep result in A-calculus, the theory underlying functional program-
ming.

In this chapter, we introduce functions with side effects and study their behavior.
We will see that as a consequence we have to fundamentally modify up the substi-
tution model of computation which we employed so far.

10.1 Stateful Objects

We normally view the world as a set of objects, some of which have state that
changes over time. Normally, state is associated with a set of variables that can be
changed in the course of a computation. There is also a more abstract notion of
state, which does not refer to particular constructs of a programming language: An
object has state (or: is stateful) if its behavior is influenced by its history.

For instance, a bank account object has state, because the question “can I withdraw
100 CHF?” might have different answers during the lifetime of the account.

In Scala, all mutable state is ultimately built from variables. A variable definition is
written like a value definition, but starts with var instead of val. For instance, the
following two definitions introduce and initialize two variables x and count.

var x: String = "abc"

'We ignore here the fact that some of our program printed to standard output, which technically
is a side effect.
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var count = 111

Like a value definition, a variable definition associates a name with a value. But in
the case of a variable definition, this association may be changed later by an assign-
ment. Such assignments are written as in C or Java. Examples:

x = "hello"
count = count + 1

In Scala, every defined variable has to be initialized at the point of its definition.
For instance, the statement var x: Int; is notregarded as a variable definition,
because the initializer is missingz. If one does not know, or does not care about, the
appropriate initializer, one can use a wildcard instead. I.e.

val x: T = _

will initialize x to some default value (null for reference types, false for booleans,
and the appropriate version of 0 for numeric value types).

Real-world objects with state are represented in Scala by objects that have variables
as members. For instance, here is a class that represents bank accounts.

class BankAccount {
private var balance = 0
def deposit(amount: Int) {
if (amount > 0) balance += amount

}

def withdraw(amount: Int): Int =
if (0 < amount && amount <= balance) {
balance -= amount
balance
} else error("insufficient funds")

The class defines a variable balance which contains the current balance of an ac-
count. Methods deposit and withdraw change the value of this variable through
assignments. Note that balance is private in class BankAccount — hence it can not
be accessed directly outside the class.

To create bank-accounts, we use the usual object creation notation:

val myAccount = new BankAccount

2If a statement like this appears in a class, it is instead regarded as a variable declaration, which
introduces abstract access methods for the variable, but does not associate these methods with a
piece of state.
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Example 10.1.1 Here is a scalaint session that deals with bank accounts.

scala> :1 bankaccount.scala

Loading bankaccount.scala...

defined class BankAccount

scala> val account = new BankAccount

account: BankAccount = BankAccount$class@1797795

scala> account deposit 50

unnamedO: Unit = ()

scala> account withdraw 20

unnamedl: Int = 30

scala> account withdraw 20

unnamed2: Int = 10

scala> account withdraw 15

java.lang.Error: insufficient funds
at scala.Predef$error(Predef.scala:74)
at BankAccount$class.withdraw(<console>:14)
at <init>(<console>:5)

scala>

The example shows that applying the same operation (withdraw 20) twice to an
account yields different results. So, clearly, accounts are stateful objects.

Sameness and Change. Assignments pose new problems in deciding when two
expressions are “the same”. If assignments are excluded, and one writes

val x = E; val y = E
where E is some arbitrary expression, then x and y can reasonably be assumed to be
the same. I.e. one could have equivalently written

val x = E; val y = x
(This property is usually called referential transparency). But once we admit assign-
ments, the two definition sequences are different. Consider:

val x = new BankAccount; val y = new BankAccount

To answer the question whether x and y are the same, we need to be more pre-
cise what “sameness” means. This meaning is captured in the notion of operational
equivalence, which, somewhat informally, is stated as follows.

Suppose we have two definitions of x and y. To test whether x and y define the same
value, proceed as follows.

* Execute the definitions followed by an arbitrary sequence S of operations that
involve x and y. Observe the results (if any).
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* Then, execute the definitions with another sequence S’ which results from S
by renaming all occurrences of y in S to x.

e If the results of running S’ are different, then surely x and y are different.

* On the other hand, if all possible pairs of sequences {S, S’} yield the same
results, then x and y are the same.

In other words, operational equivalence regards two definitions x and y as defining
the same value, if no possible experiment can distinguish between x and y. An ex-
periment in this context are two version of an arbitrary program which use either x
ory.

Given this definition, let’s test whether

val x = new BankAccount; val y = new BankAccount

defines values x and y which are the same. Here are the definitions again, followed
by a test sequence:

> val x = new BankAccount
> val vy = new BankAccount
> x deposit 30

30

> y withdraw 20
java.lang.RuntimeException: insufficient funds

Now, rename all occurrences of y in that sequence to x. We get:

> val x = new BankAccount
> val v = new BankAccount
> x deposit 30

30

> x withdraw 20

10

Since the final results are different, we have established that x and y are not the
same. On the other hand, if we define

val x = new BankAccount; val v = x

then no sequence of operations can distinguish between x and y, so x and y are the
same in this case.

Assignment and the Substitution Model. These examples show that our previous
substitution model of computation cannot be used anymore. After all, under this
model we could always replace a value name by its defining expression. For instance
in
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val x = new BankAccount; val y = x

the x in the definition of y could be replaced by new BankAccount. But we have seen
that this change leads to a different program. So the substitution model must be
invalid, once we add assignments.

10.2 Imperative Control Structures

Scala has the while and do-while loop constructs known from the C and Java lan-
guages. There is also a single branch if which leaves out the else-part as well as a
return statement which aborts a function prematurely. This makes it possible to
program in a conventional imperative style. For instance, the following function,
which computes the n’th power of a given parameter x, is implemented using while
and single-branch if.

def power(x: Double, n: Int): Double = {
var r = 1.0
var i = n
var j = 0
while (j < 32) {
r=r*7T
if (i < 0)
T %= X
i=1<1
j+=1
}
T

These imperative control constructs are in the language for convenience. They
could have been left out, as the same constructs can be implemented using just
functions. As an example, let’s develop a functional implementation of the while
loop. whileLoop should be a function that takes two parameters: a condition, of
type Boolean, and a command, of type Unit. Both condition and command need
to be passed by-name, so that they are evaluated repeatedly for each loop iteration.
This leads to the following definition of whileLoop.

def whileLoop(condition: => Boolean)(command: => Unit) {
if (condition) {
command; whileLoop(condition) (command)
} else {}
}

Note that whileLoop is tail recursive, so it operates in constant stack space.
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Exercise 10.2.1 Write a function repeatLoop, which should be applied as follows:

repeatLoop { command } ( condition )

Is there also a way to obtain a loop syntax like the following?

repeatLoop { command } until ( condition )

Some other control constructs known from C and Java are missing in Scala: There
are no break and continue jumps for loops. There are also no for-loops in the Java
sense — these have been replaced by the more general for-loop construct discussed
in Section 9.4.

10.3 Extended Example: Discrete Event Simulation

We now discuss an example that demonstrates how assignments and higher-order
functions can be combined in interesting ways. We will build a simulator for digital
circuits.

The example is taken from Abelson and Sussman’s book [ASS96]. We augment
their basic (Scheme-) code by an object-oriented structure which allows code-reuse
through inheritance. The example also shows how discrete event simulation pro-
grams in general are structured and built.

We start with a little language to describe digital circuits. A digital circuit is built
from wires and function boxes. Wires carry signals which are transformed by func-
tion boxes. We will represent signals by the booleans true and false.

Basic function boxes (or: gates) are:

* An inverter, which negates its signal
* An and-gate, which sets its output to the conjunction of its input.

* An or-gate, which sets its output to the disjunction of its input.

Other function boxes can be built by combining basic ones.

Gates have delays, so an output of a gate will change only some time after its inputs
change.

A Language for Digital Circuits. We describe the elements of a digital circuit by
the following set of Scala classes and functions.

First, there is a class Wire for wires. We can construct wires as follows.

val a = new Wire
val b = new Wire
val ¢ = new Wire
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Second, there are procedures

def inverter(input: Wire, output: Wire)
def andGate(al: Wire, a2: Wire, output: Wire)
def orGate(ol: Wire, o2: Wire, output: Wire)

which “make” the basic gates we need (as side-effects). More complicated function

boxes can now be built from these. For instance, to construct a half-adder, we can
define:

def halfAdder(a: Wire, b: Wire, s: Wire, c: Wire) {
val d = new Wire
val e = new Wire
orGate(a, b, d)
andGate(a, b, ¢)
inverter(c, e)
andGate(d, e, s)

This abstraction can itself be used, for instance in defining a full adder:

def fullAdder(a: Wire, b: Wire, cin: Wire, sum: Wire, cout: Wire) {
val s = new Wire
val cl = new Wire
val c2 = new Wire
halfAdder(a, cin, s, cl)
halfAdder(b, s, sum, c2)
orGate(cl, c2, cout)

Class Wire and functions inverter, andGate, and orGate represent thus a little lan-
guage in which users can define digital circuits. We now give implementations of
this class and these functions, which allow one to simulate circuits. These imple-
mentations are based on a simple and general API for discrete event simulation.

The Simulation API. Discrete event simulation performs user-defined actions at
specified times. An action is represented as a function which takes no parameters
and returns a Unit result:

type Action = () => Unit

The timeis simulated; it is not the actual “wall-clock” time.

A concrete simulation will be done inside an object which inherits from the abstract
Simulation class. This class has the following signature:

abstract class Simulation {
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def currentTime: Int
def afterDelay(delay: Int, action: => Action)
def run()

3

Here, currentTime returns the current simulated time as an integer number,
afterDelay schedules an action to be performed at a specified delay after
currentTime, and run runs the simulation until there are no further actions to be
performed.

The Wire Class. A wire needs to support three basic actions.

getSignal: Boolean returns the current signal on the wire.
setSignal(sig: Boolean) sets the wire’s signal to sig.

addAction(p: Action) attaches the specified procedure p to the actions of
the wire. All attached action procedures will be executed every time the signal
of a wire changes.

Here is an implementation of the Wire class:

class Wire {
private var sigVal = false
private var actions: List[Action] = List()
def getSignal = sigVal
def setSignal(s: Boolean) =
if (s != sigVal) {

sigvVal = s
actions.foreach(action => action())
}
def addAction(a: Action) {
actions = a :: actions; a()

Two private variables make up the state of a wire. The variable sigVal represents the
current signal, and the variable actions represents the action procedures currently
attached to the wire.

The Inverter Class. We implement an inverter by installing an action on its input
wire, namely the action which puts the negated input signal onto the output sig-
nal. The action needs to take effect at InverterDelay simulated time units after the
input changes. This suggests the following implementation:

def inverter(input: Wire, output: Wire) {
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def invertAction() {

val inputSig = input.getSignal

afterDelay(InverterDelay) { output setSignal !inputSig }
}

input addAction invertAction

}

The And-Gate Class. And-gates are implemented analogously to inverters. The
action of an andGate is to output the conjunction of its input signals. This should
happen at AndGateDelay simulated time units after any one of its two inputs
changes. Hence, the following implementation:

def andGate(al: Wire, a2: Wire, output: Wire) {
def andAction() {
val alSig = al.getSignal
val a2Sig = a2.getSignal
afterDelay(AndGateDelay) { output setSignal (alSig & a2Sig) }
3

al addAction andAction
a2 addAction andAction

Exercise 10.3.1 Write the implementation of orGate.

Exercise 10.3.2 Another way is to define an or-gate by a combination of inverters
and and gates. Define a function orGate in terms of andGate and inverter. What is
the delay time of this function?

The Simulation Class. Now, we just need to implement class Simulation, and we
are done. The idea is that we maintain inside a Simulation object an agenda of
actions to perform. The agenda is represented as a list of pairs of actions and the
times they need to be run. The agenda list is sorted, so that earlier actions come
before later ones.

abstract class Simulation {
case class WorkItem(time: Int, action: Action)
private type Agenda = List[WorkItem]
private var agenda: Agenda = List()

There is also a private variable curtime to keep track of the current simulated time.

private var curtime = 0
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An application of the method afterDelay(delay, block) inserts the element
WorkItem(currentTime + delay, () => block) into the agenda list at the appro-
priate place.

private def insert(ag: Agenda, item: WorkItem): Agenda =
if (ag.isEmpty || item.time < ag.head.time) item :: ag
else ag.head :: insert(ag.tail, item)

def afterDelay(delay: Int)(block: => Unit) {
val item = WorkItem(currentTime + delay, () => block)
agenda = insert(agenda, item)

}

An application of the run method removes successive elements from the agenda and
performs their actions. It continues until the agenda is empty:

private def next() {
agenda match {
case WorkItem(time, action) :: rest =>
agenda = rest; curtime = time; action()
case List() =>

}

3

def run() {
afterDelay(0) { println("=+* simulation started =*=#=") }
while (!agenda.isEmpty) next()

}

Running the Simulator. To run the simulator, we still need a way to inspect
changes of signals on wires. To this purpose, we write a function probe.

def probe(name: String, wire: Wire) {
wire addAction {
println(name +
}
3

new_value = " + wire.getSignal)

+ currentTime +

Now, to see the simulator in action, let’s define four wires, and place probes on two
of them:

scala> val inputl, input2, sum, carry = new Wire

scala> probe("sum", sum)
sum 0 new_value = false
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scala> probe('carry", carry)
carry 0 new_value = false

Now let’s define a half-adder connecting the wires:

scala> halfAdder(inputl, input2, sum, carry)

Finally, set one after another the signals on the two input wires to true and run the
simulation.

scala> inputl setSignal true; run
%# simulation started *+=
sum 8 new_value = true

scala> input2 setSignal true; run
carry 11 new_value = true
sum 15 new_value = false

10.4 Summary

We have seen in this chapter the constructs that let us model state in Scala — these
are variables, assignments, and imperative control structures. State and Assign-
ment complicate our mental model of computation. In particular, referential trans-
parency is lost. On the other hand, assignment gives us new ways to formulate pro-
grams elegantly. As always, it depends on the situation whether purely functional
programming or programming with assignments works best.






Chapter 11

Computing with Streams

The previous chapters have introduced variables, assignment and stateful objects.
We have seen how real-world objects that change with time can be modeled by
changing the state of variables in a computation. Time changes in the real world
thus are modeled by time changes in program execution. Of course, such time
changes are usually stretched out or compressed, but their relative order is the
same. This seems quite natural, but there is a also price to pay: Our simple and pow-
erful substitution model for functional computation is no longer applicable once we
introduce variables and assignment.

Is there another way? Can we model state change in the real world using only im-
mutable functions? Taking mathematics as a guide, the answer is clearly yes: A
time-changing quantity is simply modeled by a function £(t) with a time parame-
ter t. The same can be done in computation. Instead of overwriting a variable with
successive values, we represent all these values as successive elements in a list. So,
amutable variable var x: T gets replaced by an immutable value val x: List[T].
In a sense, we trade space for time — the different values of the variable now all exist
concurrently as different elements of the list. One advantage of the list-based view
is that we can “time-travel”, i.e. view several successive values of the variable at the
same time. Another advantage is that we can make use of the powerful library of list
processing functions, which often simplifies computation. For instance, consider
the imperative way to compute the sum of all prime numbers in an interval:

def sumPrimes(start: Int, end: Int): Int = {
var i = start
var acc = 0
while (i < end) {
if (isPrime(i)) acc += i
i+4=1
}

acc
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Note that the variable i “steps through” all values of the interval [start .. end-1].

A more functional way is to represent the list of values of variable i directly as
range(start, end). Then the function can be rewritten as follows.

def sumPrimes(start: Int, end: Int) =
sum(range(start, end) filter isPrime)

No contest which program is shorter and clearer! However, the functional program
is also considerably less efficient since it constructs a list of all numbers in the in-
terval, and then another one for the prime numbers. Even worse from an efficiency
point of view is the following example:

To find the second prime number between 1000 and 10000:

range (1000, 10000) filter isPrime at 1

Here, the list of all numbers between 1000 and 10000 is constructed. But most of
that list is never inspected!

However, we can obtain efficient execution for examples like these by a trick:

Avoid computing the tail of a sequence unless that tail is actually neces-
sary for the computation.

We define a new class for such sequences, which is called Stream.

Streams are created using the constant empty and the constructor cons, which are
both defined in module scala.Stream. For instance, the following expression con-
structs a stream with elements 1 and 2:

Stream.cons(1l, Stream.cons(2, Stream.empty))

As another example, here is the analogue of List.range, but returning a stream
instead of a list:

def range(start: Int, end: Int): Stream[Int] =
if (start >= end) Stream.empty
else Stream.cons(start, range(start + 1, end))

(This function is also defined as given above in module Stream). Even though
Stream.range and List.range look similar, their execution behavior is completely
different:

Stream.range immediately returns with a Stream object whose first element is
start. All other elements are computed only when they are demanded by calling
the tail method (which might be never at all).

Streams are accessed just as lists. as for lists, the basic access methods are isEmpty,
head and tail. For instance, we can print all elements of a stream as follows.
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def print(xs: Stream[A]) {
if (!xs.isEmpty) { Console.println(xs.head); print(xs.tail) }
}

Streams also support almost all other methods defined on lists (see below for where
their methods sets differ). For instance, we can find the second prime number be-
tween 1000 and 10000 by applying methods filter and apply on an interval stream:

Stream.range(1000, 10000) filter isPrime at 1

The difference to the previous list-based implementation is that now we do not
needlessly construct and test for primality any numbers beyond 3.

Consing and appending streams. Two methods in class List which are not sup-
ported by class Stream are :: and :::. The reason is that these methods are dis-
patched on their right-hand side argument, which means that this argument needs
to be evaluated before the method is called. For instance, in the case of x :: xs
on lists, the tail xs needs to be evaluated before :: can be called and the new list
can be constructed. This does not work for streams, where we require that the tail
of a stream should not be evaluated until it is demanded by a tail operation. The
argument why list-append : : : cannot be adapted to streams is analogous.

Instead of x :: xs, one uses Stream.cons(x, xs) for constructing a stream with
first element x and (unevaluated) rest xs. Instead of xs ::: ys, one uses the opera-
tion xs append vs.






Chapter 12

lterators

Iterators are the imperative version of streams. Like streams, iterators describe po-
tentially infinite lists. However, there is no data-structure which contains the el-
ements of an iterator. Instead, iterators allow one to step through the sequence,
using two abstract methods next and hasNext.

trait Iterator[+A] {
def hasNext: Boolean
def next: A

Method next returns successive elements. Method hasNext indicates whether there
are still more elements to be returned by next. Iterators also support some other
methods, which are explained later.

As an example, here is an application which prints the squares of all numbers from
1 to 100.

val it: Iterator[Int] = Iterator.range(l, 100)
while (it.hasNext) {

val x = it.next

println(x * x)

}

12.1 Iterator Methods

Iterators support arich set of methods besides next and hasNext, which is described
in the following. Many of these methods mimic a corresponding functionality in
lists.
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Append. Method append constructs an iterator which resumes with the given iter-
ator it after the current iterator has finished.

def append[B >: A](that: Iterator[B]): Iterator[B] = new Iterator[B] {
def hasNext = Iterator.this.hasNext || that.hasNext
def next = if (Iterator.this.hasNext) Iterator.this.next else that.next

The terms Iterator.this.next and Iterator.this.hasNext in the definition of
append call the corresponding methods as they are defined in the enclosing
Tterator class. If the Iterator prefix to this would have been missing, hasNext
and next would have called recursively the methods being defined in the result of
append, which is not what we want.

Map, FlatMap, Foreach. Method map constructs an iterator which returns all ele-
ments of the original iterator transformed by a given function f.

def map[B](f: A => B): Iterator[B] = new Iterator[B] {
def hasNext = Iterator.this.hasNext
def next = f(Iterator.this.next)

}

Method flatMap is like method map, except that the transformation function £ now
returns an iterator. The result of flatMap is the iterator resulting from appending
together all iterators returned from successive calls of f.

def flatMap[B](f: A => Iterator[B]): Iterator[B] = new Iterator[B] {

private var cur: Iterator[B] = Iterator.empty

def hasNext: Boolean =
if (cur.hasNext) true
else if (Iterator.this.hasNext) { cur
else false

def next: B =
if (cur.hasNext) cur.next
else if (Iterator.this.hasNext) { cur
else error('next on empty iterator")

f(Iterator.this.next); hasNext }

f(Iterator.this.next); next }

Closely related to map is the foreach method, which applies a given function to all
elements of an iterator, but does not construct a list of results

def foreach(f: A => Unit): Unit =
while (hasNext) { f(next) }
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Filter. Method filter constructs an iterator which returns all elements of the
original iterator that satisfy a criterion p.

def filter(p: A => Boolean) = new BufferedIterator[a] {
private val source =
Iterator.this.buffered
private def skip
{ while (source.hasNext && !p(source.head)) { source.next } }
def hasNext: Boolean =
{ skip; source.hasNext }
def next: A =
{ skip; source.next }
def head: A =
{ skip; source.head }

In fact, filter returns instances of a subclass of iterators which are “buffered”. A
BufferedIterator object is an iterator which has in addition a method head. This
method returns the element which would otherwise have been returned by head,
but does not advance beyond that element. Hence, the element returned by head
is returned again by the next call to head or next. Here is the definition of the
BufferedIterator trait.

trait BufferedIterator[+A] extends Iterator[A] {
def head: A

Since map, flatMap, filter, and foreach exist for iterators, it follows that for-
comprehensions and for-loops can also be used on iterators. For instance, the ap-
plication which prints the squares of numbers between 1 and 100 could have equiv-
alently been expressed as follows.

for (i <- Iterator.range(l, 100))
println(i * i)

Zip. Method zip takes another iterator and returns an iterator consisting of pairs
of corresponding elements returned by the two iterators.

def zip[B](that: Iterator[B]) = new Iterator[(a, b)] {
def hasNext = Iterator.this.hasNext && that.hasNext
def next = {Iterator.this.next, that.next}
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12.2 Constructing Iterators

Concrete iterators need to provide implementations for the two abstract methods
next and hasNext in class Iterator. The simplest iterator is Iterator.empty which
always returns an empty sequence:

object Iterator {
object empty extends Iterator[Nothing] {
def hasNext = false
def next = error('"next on empty iterator")

A more interesting iterator enumerates all elements of an array. This iterator is con-
structed by the fromArray method, which is also defined in the object Iterator

def fromArray[A](xs: Array[A])
private var i = 0
def hasNext: Boolean =
i < xs.length
def next: A =
if (i < xs.length) { val x = xs(i); i += 1; x }
else error('next on empty iterator")

new Iterator[A] {

Another iterator enumerates an integer interval. The Iterator.range function re-
turns an iterator which traverses a given interval of integer values. It is defined as
follows.

object Iterator {
def range(start: Int, end: Int) = new Iterator[Int] {

private var current = start

def hasNext = current < end

def next = {
val r = current
if (current < end) current += 1
else error("end of iterator")
T

All iterators seen so far terminate eventually. It is also possible to define iterators
that go on forever. For instance, the following iterator returns successive integers
from some start value'.

'Due to the finite representation of type int, numbers will wrap around at 23!
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def from(start: Int) = new Iterator[Int] {
private var last = start - 1
def hasNext = true
def next = { last += 1; last }

12.3 Using Iterators

Here are two more examples how iterators are used. First, to print all elements of an
array xs: Array[Int], one can write:

Iterator.fromArray(xs) foreach (x => println(x))

Or, using a for-comprehension:

for (x <- Iterator.fromArray(xs))
println(x)

As a second example, consider the problem of finding the indices of all the elements
in an array of doubles greater than some 1imit. The indices should be returned as
an iterator. This is achieved by the following expression.

import Iterator._

fromArray(xs)

.zip(from(0))

.filter(case (x, 1) => x > limit)
.map(case (x, i) => i)

Or, using a for-comprehension:

import Iterator._
for ((x, i) <- fromArray(xs) zip from(0); x > limit)
yield i






Chapter 13

Implicit Parameters and Conver-
sions

Implicit parameters and conversions are powerful tools for custimizing existing li-
braries and for creating high-level abstractions. As an example, let’s start with an
abstract class of semi-groups that support an unspecified add operation

abstract class SemiGroup[A] {
def add(x: A, y: A): A
3

Here’s a subclass Monoid of SemiGroup which adds a unit element.

abstract class Monoid[A] extends SemiGroup[A] {
def unit: A

}

Here are two implementations of monoids:

object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}

object intMonoid extends Monoid[Int] {
def add(x: Int, y: Int): Int = x + vy
def unit: Int = 0

}

A sum method, which works over arbitrary monoids, can be written in plain Scala as
follows.

def sum[A](xs: List[A])(m: Monoid[A]): A =
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if (xs.isEmpty) m.unit
else m.add(xs.head, sum(m)(xs.tail)

This sum method can be called as follows:

sum(List("a", "bc", "def"))(stringMonoid)
sum(List(1, 2, 3))(intMonoid)

All this works, but it is not very nice. The problem is that the monoid implementa-
tions have to be passed into all code that uses them. We would sometimes wish that
the system could figure out the correct arguments automatically, similar to what is
done when type arguments are inferred. This is what implicit parameters provide.

Implicit Parameters: The Basics

In Scala 2 there is a new implicit keyword that can be used at the beginning of a
parameter list. Syntax:

[Param {‘,’ Param}] ')’}

ParamClauses ::= {
[ implicit Param {‘,’ Param} ‘)’]

(
‘(’

If the keyword is present, it makes all parameters in the list implicit. For instance,
the following version of sum has m as an implicit parameter.

def sum[A](xs: List[A]) (implicit m: Monoid[A]): A =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail))

As can be seen from the example, it is possible to combine normal and implicit
parameters. However, there may only be one implicit parameter list for a method or
constructor, and it must come last.

implicit can also be used as a modifier for definitions and declarations. Examples:

implicit object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

¥

implicit object intMonoid extends Monoid[Int] {
def add(x: Int, y: Int): Int = x +Vy
def unit: Int =0

The principal idea behind implicit parameters is that arguments for them can be left
out from a method call. If the arguments corresponding to an implicit parameter
section are missing, they are inferred by the Scala compiler.
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The actual arguments that are eligible to be passed to an implicit parameter are all
identifiers X that can be accessed at the point of the method call without a prefix
and that denote an implicit definition or parameter.

If there are several eligible arguments which match the implicit parameter’s type,
the Scala compiler will chose a most specific one, using the standard rules of static
overloading resolution. For instance, assume the call

sum(List(1, 2, 3))

in a context where stringMonoid and intMonoid are visible. We know that the formal
type parameter a of sum needs to be instantiated to int. The only eligible value
which matches the implicit formal parameter type Monoid[Int] is intMonoid so this
object will be passed as implicit parameter.

This discussion also shows that implicit parameters are inferred after any type ar-
guments are inferred.

Implicit Conversions

Say you have an expression E of type T which is expected to type S. T does not con-
form to S and is not convertible to S by some other predefined conversion. Then the
Scala compiler will try to apply as last resort an implicit conversion I(E). Here, I is
an identifier denoting an implicit definition or parameter that is accessible without
a prefix at the point of the conversion, that can be applied to arguments of type T
and whose result type conforms to the expected type S.

Implicit conversions can also be applied in member selections. Given a selection
E.x where x is not a member of the type E, the Scala compiler will try to insert an
implicit conversion I(E).x, so that x is a member of I(E).

Here is an example of an implicit conversion function that converts integers into
instances of class scala.Ordered:

implicit def int2ordered(x: Int): Ordered[Int] = new Ordered[Int] {
def compare(y: Int): Int =
if (x <vyl) -1
else if (x>vyl) 1
else 0

View Bounds

View bounds are convenient syntactic sugar for implicit parameters. Consider for
instance a generic sort method:

def sort[A <% Ordered[A]](xs: List[A]): List[A] =
if (xs.isEmpty || xs.tail.isEmpty) xs
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else {
val {ys, zs} = xs.splitAt(xs.length / 2)
merge(ys, zs)

}

The view bounded type parameter [a <% Ordered[a]] expresses that sort is ap-
plicable to lists of type a such that there exists an implicit conversion from a to
Ordered[a]. The definition is treated as a shorthand for the following method sig-
nature with an implicit parameter:

def sort[A](xs: List[A])(implicit c: A => Ordered[A]): List[A] = ...

(Here, the parameter name c is chosen arbitrarily in a way that does not collide with
other names in the program.)

As a more detailed example, consider the merge method that comes with the sort
method above:

def merge[A <% Ordered[A]](xs: List[A], ys: List[A]): List[A] =
if (xs.isEmpty) ys
else if (ys.isEmpty) xs
else if (xs.head < ys.head) xs.head :: merge(xs.tail, ys)
else if ys.head :: merge(xs, ys.tail)

After expanding view bounds and inserting implicit conversions, this method im-
plementation becomes:

def merge[A](xs: List[A], ys: List[A])
(implicit c¢: A => Ordered[A]): List[A] =
if (xs.isEmpty) ys
else if (ys.isEmpty) xs
else if (c(xs.head) < ys.head) xs.head :: merge(xs.tail, vys)
else if ys.head :: merge(xs, ys.tail)(c)

The last two lines of this method definition illustrate two different uses of the im-
plicit parameter c. It is applied in a conversion in the condition of the second to last
line, and it is passed as implicit argument in the recursive call to merge on the last
line.
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Combinator Parsing

In this chapter we describe how to write combinator parsers in Scala. Such parsers
are constructed from predefined higher-order functions, so called parser combina-
tors, that closely model the constructions of an EBNF grammar [Wir77].

As running example, we consider parsers for possibly nested lists of identifiers and
numbers, which are described by the following context-free grammar.

letter = /[*allletters */

digit = /*all digits */

ident = letter {letter | digit }
number = digit {digit}

list = ‘( [listElems] ‘)’
listElems = expr [, listElems]
expr = ident | number | list

14.1 Simple Combinator Parsing

In this section we will only be concerned with the task of recognizing input strings,
not with processing them. So we can describe parsers by the sets of input strings
they accept. There are two fundamental operators over parsers: & expresses the
sequential composition of a parser with another, while | expresses an alternative.
These operations will both be defined as methods of a Parser class. We will also
define constructors for the following primitive parsers:
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empty The parser that accepts the empty string
failure(msg: String) The parser that accepts no string (msg stands for an error me
chr(c: char) The parser that accepts the single-character string “c”.

“_n

chrSuchThat(p: Char => Boolean) The parser that accepts single-character strings “c
for which p(c) is true.

There are also the two higher-order parser combinators opt, expressing optionality
and rep, expressing repetition. For any parser p, opt(p) yields a parser that accepts
the strings accepted by p or else the empty string, while rep(p) accepts arbitrary
sequences of the strings accepted by p. In EBNE opt(p) corresponds to [p] and
rep(p) corresponds to {p}.

The central idea of parser combinators is that parsers can be produced by a straight-
forward rewrite of the grammar, replacing : : = with =, sequencing with &, repetition
{...} with rep(...) and optional occurrence [...] with opt(...). Applying this
process to the grammar of lists yields the following trait.

trait class ListParsers extends Parsers {
def chrSuchThat(p: Char => Boolean): Parser
def chr(c: Char): Parser = chrSuchThat(d ==

def letter : Parser = chr(Character.isLetter)

def digit : Parser = chr(Character.isDigit)

def ident : Parser = letter &&& rep(letter ||| digit)

def number : Parser = digit &&& rep(digit)

def list : Parser = chr(’(’) &&& opt(listElems) &&& chr(’)’)
def listElems : Parser = expr &&& (chr(’,’) &&& listElems ||| empty)
def expr : Parser = ident ||| number ||| list

This class isolates the grammar from other aspects of parsing. It abstracts over the
type of input and over the method used to parse a single character (represented by
the abstract method chr(p: char => boolean)). The missing bits of information
need to be supplied by code applying the parser class.

It remains to explain how to implement a library with the combinators described
above. We will pack combinators and their underlying implementation in a base
class Parsers, which is inherited by ListParsers. The first question to decide is
which underlying representation type to use for a parser. We treat parsers here es-
sentially as functions that take a datum of the input type InType and that yield a
parse result of type Option[InType]. The Option type is predefined as follows.

abstract class Option[+a]
case object None extends Option[Nothing]
case class Some[a](x: a) extends Option[a]

A parser applied to some input either succeeds or fails. If it fails, it returns the con-
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stant None. If it succeeds, it returns a value of the form Some (inl) where inl repre-
sents the input that remains to be parsed.

trait Parsers {
type InType
abstract class Parser {
type Result = Option[InType]
def apply(in: InType): Result

A parser also implements the combinators for sequence and alternative:

/+*+% p &&& q applies first p, and if that succeeds, then g
%/

def &&& (q: => Parser) = new Parser {

def apply(in: InType): Result = Parser.this.apply(in) match {
case None => None
case Some(inl) => q(inl)

}

}

/*%% p ||| q applies first p, and, if that fails, then q.
:'r/

def ||| (q: => Parser) = new Parser {

def apply(in: InType): Result = Parser.this.apply(in) match {
case None => q(in)
case s => S

The implementations of the primitive parsers empty and fail are trivial:

Some(in) }
None }

val empty = new Parser { def apply(in: InType): Result
val fail = new Parser { def apply(in: InType): Result

The higher-order parser combinators opt and rep can be defined in terms of the
combinators for sequence and alternative:

def opt(p: Parser): Parser = p ||| empty; // p? (p | <empty>)
def rep(p: Parser): Parser = opt(repl(p)); // p* = [p+]
def repl(p: Parser): Parser = p &&& rep(p); // p+ = p p*

} // end Parser

To run combinator parsers, we still need to decide on a way to handle parser in-
put. Several possibilities exist: The input could be represented as a list, as an array,
or as a random access file. Note that the presented combinator parsers use back-
tracking to change from one alternative to another. Therefore, it must be possible
to reset input to a point that was previously parsed. If one restricted the focus to
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LL(1) grammars, a non-backtracking implementation of the parser combinators in
class Parsers would also be possible. In that case sequential input methods based
on (say) iterators or sequential files would also be possible.

In our example, we represent the input by a pair of a string, which contains the input
phrase as awhole, and an index, which represents the portion of the input which has
not yet been parsed. Since the input string does not change, just the index needs to
be passed around as a result of individual parse steps. This leads to the following
class of parsers that read strings:

class ParseString(s: String) extends Parsers {
type InType = Int
def chrSuchThat(p: Char => Boolean) = new Parser {
def apply(in: Int): Parser#Result =
if (in < s.length() && p(s charAt in)) Some(in + 1)
else None

}
val input = 0

}

This class implements a method chr(p: Char => Boolean) and a value input. The
chr method builds a parser that either reads a single character satisfying the given
predicate p or fails. All other parsers over strings are ultimately implemented in
terms of that method. The input value represents the input as a whole. In out case,
itis simply value 0, the start index of the string to be read.

Note apply’s result type, Parser#Result. This syntax selects the type element
Result of the type Parser. It thus corresponds roughly to selecting a static in-
ner class from some outer class in Java. Note that we could not have written
Parser.Result, as the latter would express selection of the Result element from
a valuenamed Parser.

We have now extended the root class Parsers in two different directions: Class
ListParsers defines a grammar of phrases to be parsed, whereas class ParseString
defines a method by which such phrases are input. To write a concrete parsing ap-
plication, we need to define both grammar and input method. We do this by com-
bining two extensions of Parsers using a mixin composition. Here is the start of a
sample application:

object Test {
def main(args: Array[String]) {
val ps = new ParseString(args(0)) with ListParsers

}

The last line above creates a new family of parsers by composing class ListParsers
with class ParseString. The two classes share the common superclass Parsers. The
abstract method chr in ListParsers is implemented by class ParseString.
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To run the parser, we apply the start symbol of the grammar expr the argument
codeinput and observe the result:

ps.expr(ps.input) match {
case Some(n) =>
println("parsed:
case None =>
println("nothing parsed")

+ args(0) .substring(0, n))

}
}
}// end Test

Note the syntax ps.expr(input), which treats the expr parser as if it was a function.
In Scala, objects with apply methods can be applied directly to arguments as if they
were functions.

Here is an example run of the program above:

> java examples.Test "(x,1,(y,z))"
parsed: (x,1,(v,z))

> java examples.Test "(x,,1,(y,z))"
nothing parsed

14.2 Parsers that Produce Results

The combinator library of the previous section does not support the generation of
output from parsing. But usually one does not just want to check whether a given
string belongs to the defined language, one also wants to convert the input string
into some internal representation such as an abstract syntax tree.

In this section, we modify our parser library to build parsers that produce results.
We will make use of the for-comprehensions introduced in Chapter 9. The basic
combinator of sequential composition, formerly p &&& g, now becomes

for (x <- p; v <- q) yield e .

Here, the names x and y are bound to the results of executing the parsers p and q. e
is an expression that uses these results to build the tree returned by the composed
parser.

Before describing the implementation of the new parser combinators, we explain
how the new building blocks are used. Say we want to modify our list parser so that
it returns an abstract syntax tree of the parsed expression. Syntax trees are given by
the following class hierarchy:

abstract class Tree
case class Id (s: String) extends Tree
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case class Num(n: Int) extends Tree
case class Lst(elems: List[Tree]) extends Tree

That is, a syntax tree is an identifier, an integer number, or a Lst node with a list of
trees as descendants.

As afirst step towards parsers that produce results we define three little parsers that
return a single read character as result.

trait CharParsers extends Parsers {
def any: Parser[Char]
def chr(ch: Char): Parser[Char] =
for (c <- any if c == ch) yield c
def chrSuchThat(p: Char => Boolean): Parser[Char] =
for (c <- any if p(c)) yield c

The any parser succeeds with the first character of remaining input as long as input
is nonempty. It is abstract in class ListParsers since we want to abstract in this
class from the concrete input method used. The two chr parsers return as before
the first input character if it equals a given character or matches a given predicate.
They are now implemented in terms of any.

The next level is represented by parsers reading identifiers, numbers and lists. Here
is a parser for identifiers.

trait ListParsers extends CharParsers {
def ident: Parser[Tree] =
for {
c: Char <- chrSuchThat(Character.isLetter)
cs: List[Char] <- rep(chrSuchThat(Character.isLetterOrDigit))
} vield Id((c :: cs).mkString("", "", "™"))

Remark: Because chrSuchThat(...) returns a single character, its repetition
rep(chrSuchThat(...)) returns a list of characters. The yield part of the for-
comprehension converts all intermediate results into an Id node with a string as
element. To convert the read characters into a string, it conses them into a single
list, and invokes the mkString method on the result.

Here is a parser for numbers:

def number: Parser[Tree] =
for {
d: Char <- chrSuchThat(Character.isDigit)
ds: List[Char] <- rep(chrSuchThat(Character.isDigit))
} yield Num(((d - '0’) /: ds) ((x, digit) => x * 10 + digit - '0’))

Intermediate results are in this case the leading digit of the read number, followed
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by a list of remaining digits. The yield part of the for-comprehension reduces these
to a number by a fold-left operation.

Here is a parser for lists:

def list: Parser[Tree] =

for {
_ <= chr(C’ (")
es <- listElems ||| succeed(List())
_ <= chr(’)’)

} yvield Lst(es)

def listElems: Parser[List[Tree]] =

for {
X <- expr
xs <- chr(’,’) &&& listElems ||| succeed(List())

} vield x :: xs

The 1ist parser returns a Lst node with a list of trees as elements. That list is either
the result of 1istElems, or, if that fails, the empty list (expressed here as: the result
of a parser which always succeeds with the empty list as result).

The highest level of our grammar is represented by function expr:

def expr: Parser[Tree] =
ident ||| number ||| list
}// end ListParsers.

We now present the parser combinators that support the new scheme. Parsers that
succeed now return a parse result besides the un-consumed input.

trait Parsers {
type InType
abstract class Parser[A] {
type Result = Option[ (A, InType)]
def apply(in: InType): Result

Parsers are parameterized with the type of their result. The class Parser[a] now
defines new methods map, flatMap and filter. The for expressions are mapped by
the compiler to calls of these functions using the scheme described in Chapter 9.
For parsers, these methods are implemented as follows.

def filter(pred: A => Boolean) = new Parser[A] {
def apply(in: InType): Result = Parser.this.apply(in) match {
case None => None
case Some(x, inl) => if (pred(x)) Some(x, inl) else None
}
¥
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def map[B](f: A => B) = new Parser[B] {
def apply(in: InType): Result = Parser.this.apply(in) match {
case None => None
case Some(x, inl) => Some(f(x), inl)
}
¥
def flatMap[b](f: A => Parser[B]) = new Parser[B] {
def apply(in: InType): Result = Parser.this.apply(in) match {
case None => None
case Some(x, inl) => f(x).apply(inl)
}
}

The filter method takes as parameter a predicate p which it applies to the results
of the current parser. If the predicate is false, the parser fails by returning None; oth-
erwise it returns the result of the current parser. The map method takes as parameter
a function f which it applies to the results of the current parser. The flatMap takes
as parameter a function f which returns a parser. It applies f to the result of the
current parser and then continues with the resulting parser. The | | | method is es-
sentially defined as before. The &&& method can now be defined in terms of for.

def ||| (p: => Parser[A]) = new Parser[A] {
def apply(in: InType): Result = Parser.this.apply(in) match {
case None => p(in)
case s => S

def &&& [B](p: => Parser[B]): Parser[B] =
for (_ <~ this; x <- p) yield x
}// end Parser

The primitive parser succeed replaces empty. It consumes no input and returns its
parameter as result.

def succeed[A](x: A) = new Parser[A] {
def apply(in: InType) = Some(x, in)
}

The parser combinators rep and opt now also return results. rep returns a list which
contains as elements the results of each iteration of its sub-parser. opt returns a list
which is either empty or returns as single element the result of the optional parser.

def rep[A](p: Parser[A]): Parser[List[A]] =
repl(p) ||| succeed(List())

def repl[A](p: Parser[A]): Parser[List[A]] =
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for (x <- p; xs <- rep(p)) yvield x :: xs

def opt[A](p: Parser[A]): Parser[List[A]] =
(for (x <- p) yield List(x)) ||| succeed(List())
} // end Parsers

The root class Parsers abstracts over which kind of input is parsed. As before, we
determine the input method by a separate class. Here is ParseString, this time
adapted to parsers that return results. It defines now the method any, which returns
the first input character.

class ParseString(s: String) extends Parsers {
type InType = Int
val input = 0
def any = new Parser[Char] {
def apply(in: Int): Parser[Char]#Result =
if (in < s.length()) Some(s charAt in, in + 1) else None

The rest of the application is as before. Here is a test program which constructs a
list parser over strings and prints out the result of applying it to the command line
argument.

object Test {
def main(args: Array[String]) {
val ps = new ParseString(args(0)) with ListParsers
ps.expr(ps.input) match {
case Some(list, _) => println("parsed: " + list)
case None => println("nothing parsed")
}
}
}

Exercise 14.2.1 The parsers we have defined so far can succeed even if there is
some input beyond the parsed text. To prevent this, one needs a parser which rec-
ognizes the end of input. Redesign the parser library so that such a parser can be
introduced. Which classes need to be modified?






Chapter 15
Hindley/Milner Type Inference

This chapter demonstrates Scala’s data types and pattern matching by developing a
type inference system in the Hindley/Milner style [Mil78]. The source language for
the type inferencer is lambda calculus with a let construct called Mini-ML. Abstract
syntax trees for the Mini-ML are represented by the following data type of Terms.

abstract class Term {}
case class Var(x: String) extends Term {
override def toString = x

}

case class Lam(x: String, e: Term) extends Term {
override def toString = "(\\" + x+ "." + e + ")"

}

case class App(f: Term, e: Term) extends Term {

override def toString = "("+f+ " " + e+ ")"
}
case class Let(x: String, e: Term, f: Term) extends Term {
override def toString = "let "+ x+ " ="+e + " in " + f
}

There are four tree constructors: Var for variables, Lam for function abstractions, App
for function applications, and Let for let expressions. Each case class overrides the
toString method of class Any, so that terms can be printed in legible form.

We next define the types that are computed by the inference system.

sealed abstract class Type {}

case class Tyvar(a: String) extends Type {
override def toString = a

}

case class Arrow(tl: Type, t2: Type) extends Type {
override def toString = "(" + t1 + "->" + t2 + ")"

}
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case class Tycon(k: String, ts: List[Type]) extends Type {
override def toString =
k + (if (ts.isEmpty) "" else ts.mkString("[", ",", "1™))

There are three type constructors: Tyvar for type variables, Arrow for function types
and Tycon for type constructors such as Boolean or List. Type constructors have as
component a list of their type parameters. This list is empty for type constants such
as Boolean. Again, the type constructors implement the toString method in order
to display types legibly.

Note that Type is a sealed class. This means that no subclasses or data constructors
that extend Type can be formed outside the sequence of definitions in which Type is
defined. This makes Type a closed algebraic data type with exactly three alternatives.
By contrast, type Term is an open algebraic type for which further alternatives can be
defined.

The main parts of the type inferencer are contained in object typeInfer. We start
with a utility function which creates fresh type variables:

object typeIlnfer {
private var n: Int = 0
def newTyvar(): Type = { n += 1; Tyvar("a" + n) }

We next define a class for substitutions. A substitution is an idempotent function
from type variables to types. It maps a finite number of type variables to some types,
and leaves all other type variables unchanged. The meaning of a substitution is
extended point-wise to a mapping from types to types.

abstract class Subst extends Functionl[Type,Type] {
def lookup(x: Tyvar): Type

def apply(t: Type): Type = t match {

case tv @ Tyvar(a) => val u = lookup(tv); if (t == u) t else apply(u)

case Arrow(tl, t2) => Arrow(apply(tl), apply(t2))
case Tycon(k, ts) => Tycon(k, ts map apply)
}

def extend(x: Tyvar, t: Type) = new Subst {
def lookup(y: Tyvar): Type = if (x == y) t else Subst.this.lookup(y)
}
}
val emptySubst = new Subst { def lookup(t: Tyvar): Type = t }
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We represent substitutions as functions, of type Type => Type. This is achieved by
making class Subst inherit from the unary function type Functionl[Type, Typell.
To be an instance of this type, a substitution s has to implement an apply method
that takes a Type as argument and yields another Type as result. A function applica-
tion s(t) is then interpreted as s.apply(t).

The lookup method is abstract in class Subst. There are two concrete forms of sub-
stitutions which differ in how they implement this method. One form is defined by
the emptySubst value, the other is defined by the extend method in class Subst.

The next data type describes type schemes, which consist of a type and a list of
names of type variables which appear universally quantified in the type scheme. For
instance, the type scheme VaVb.a— b would be represented in the type checker as:

TypeScheme(List(Tyvar("a"), Tyvar("b")), Arrow(Tyvar("a"), Tyvar('"b")))

The class definition of type schemes does not carry an extends clause; this means
that type schemes extend directly class AnyRef. Even though there is only one pos-
sible way to construct a type scheme, a case class representation was chosen since
it offers convenient ways to decompose an instance of this type into its parts.

case class TypeScheme(tyvars: List[Tyvar], tpe: Type) {
def newInstance: Type = {
(emptySubst /: tyvars) ((s, tv) => s.extend(tv, newTyvar())) (tpe)
}

Type scheme objects come with a method newInstance, which returns the type con-
tained in the scheme after all universally type variables have been renamed to fresh
variables. The implementation of this method folds (with /:) the type scheme’s
type variables with an operation which extends a given substitution s by renaming
a given type variable tv to a fresh type variable. The resulting substitution renames
all type variables of the scheme to fresh ones. This substitution is then applied to
the type part of the type scheme.

The last type we need in the type inferencer is Env, a type for environments, which
associate variable names with type schemes. They are represented by a type alias
Env in module typeInfer:

type Env = List[(String, TypeScheme)]
There are two operations on environments. The lookup function returns the type

scheme associated with a given name, or null if the name is not recorded in the
environment.

! The class inherits the function type as a mixin rather than as a direct superclass. This is because
in the current Scala implementation, the Functionl type is a Java interface, which cannot be used as
a direct superclass of some other class.



134 Hindley/Milner Type Inference

def lookup(env: Env, x: String): TypeScheme = env match {
case List() => null
case (y, t) :: envl => if (x == y) t else lookup(envl, x)

}

The gen function turns a given type into a type scheme, quantifying over all type
variables that are free in the type, but not in the environment.

def gen(env: Env, t: Type): TypeScheme =
TypeScheme(tyvars(t) diff tyvars(env), t)

The set of free type variables of a type is simply the set of all type variables which oc-
cur in the type. Itis represented here as a list of type variables, which is constructed
as follows.

def tyvars(t: Type): List[Tyvar] = t match {

case tv @ Tyvar(a) =>
List(tv)
case Arrow(tl, t2) =>

tyvars(tl) union tyvars(t2)
case Tycon(k, ts) =>
(List[Tyvar]() /: ts) ((tvs, t) => tvs union tyvars(t))

Note that the syntax tv @ ... in the first pattern introduces a variable which is
bound to the pattern that follows. Note also that the explicit type parameter [Tyvar]
in the expression of the third clause is needed to make local type inference work.

The set of free type variables of a type scheme is the set of free type variables of its
type component, excluding any quantified type variables:

def tyvars(ts: TypeScheme): List[Tyvar] =
tyvars(ts.tpe) diff ts.tyvars

Finally, the set of free type variables of an environment is the union of the free type
variables of all type schemes recorded in it.

def tyvars(env: Env): List[Tyvar] =
(List[Tyvar]() /: env) ((tvs, nt) => tvs union tyvars(nt._2))

A central operation of Hindley/Milner type checking is unification, which computes
a substitution to make two given types equal (such a substitution is called a unifier).
Function mgu computes the most general unifier of two given types ¢ and u under a
pre-existing substitution s. That is, it returns the most general substitution s’ which
extends s, and which makes s'() and s'(«) equal types.

def mgu(t: Type, u: Type, s: Subst): Subst = (s(t), s(u)) match {
case (Tyvar(a), Tyvar(b)) if (a == b) =>
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s
case (Tyvar(a), _) if !(tyvars(u) contains a) =>
s.extend(Tyvar(a), u)
case (_, Tyvar(a)) =>
mgu(u, t, s)
case (Arrow(tl, t2), Arrow(ul, u2)) =>
mgu(tl, ul, mgu(t2, u2, s))
case (Tycon(kl, ts), Tycon(k2, us)) if (k1 == k2) =>
(s /: (ts zip us)) ((s, tu) => mgu(tu._1, tu._2, s))
case _ =>

throw new TypeError('"cannot unify " + s(t) + " with " + s(u))

The mgu function throws a TypeError exception if no unifier substitution exists. This
can happen because the two types have different type constructors at correspond-
ing places, or because a type variable is unified with a type that contains the type
variable itself. Such exceptions are modeled here as instances of case classes that
inherit from the predefined Exception class.

case class TypeError(s: String) extends Exception(s) {}

The main task of the type checker is implemented by function tp. This function
takes as parameters an environment env, a term e, a proto-type t, and a pre-existing
substitution s. The function yields a substitution s’ that extends s and that turns
s'(env) + e: s'(1) into a derivable type judgment according to the derivation rules
of the Hindley/Milner type system [Mil78]. A TypeError exception is thrown if no
such substitution exists.

def tp(env: Env, e: Term, t: Type, s: Subst): Subst = {
current = e
e match {
case Var(x) =>
val u = lookup(env, x)
if (u == null) throw new TypeError("undefined:
else mgu(u.newInstance, t, s)

+ X)

case Lam(x, el) =>
val a, b = newTyvar()
val sl = mgu(t, Arrow(a, b), s)
val envl = {x, TypeScheme(List(), a)} :: env
tp(envl, el, b, sl)

case App(el, e2) =>
val a = newTyvar()
val sl = tp(env, el, Arrow(a, t), s)
tp(env, e2, a, sl)
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case Let(x, el, e2) =>
val a = newTyvar()
val sl = tp(env, el, a, s)
tp({x, gen(env, sl(a))} :: env, e2, t, sl)
}
}

var current: Term = null

To aid error diagnostics, the tp function stores the currently analyzed sub-term in
variable current. Thus, if type checking is aborted with a TypeError exception, this
variable will contain the subterm that caused the problem.

The last function of the type inference module, type0Of, is a simplified facade for
tp. It computes the type of a given term e in a given environment env. It does
so by creating a fresh type variable a, computing a typing substitution that makes
env  e:ainto aderivable type judgment, and returning the result of applying the
substitution to a.

def typeOf(env: Env, e: Term): Type = {
val a = newTyvar()
tp(env, e, a, emptySubst)(a)
}
}// end typelnfer

To apply the type inferencer, it is convenient to have a predefined environment that
contains bindings for commonly used constants. The module predefined defines
an environment env that contains bindings for the types of booleans, numbers and
lists together with some primitive operations over them. It also defines a fixed point
operator fix, which can be used to represent recursion.

object predefined {
val booleanType = Tycon("Boolean", List())
val intType = Tycon("Int", List())
def listType(t: Type) = Tycon("List", List(t))

private def gen(t: Type): typelnfer.TypeScheme = typelnfer.gen(List(), t)
private val a = typeIlnfer.newTyvar()
val env = List(
{"true", gen(booleanType)},
{"false", gen(booleanType)},
"if", gen(Arrow(booleanType, Arrow(a, Arrow(a, a))))},
{"zero", gen(intType)},
{"succ", gen(Arrow(intType, intType))},
{"nil", gen(listType(a))},
{"cons", gen(Arrow(a, Arrow(listType(a), listType(a))))},
{"isEmpty", gen(Arrow(listType(a), booleanType))},
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{"head", gen(Arrow(listType(a), a))},
{"tail", gen(Arrow(listType(a), listType(a)))},
{"fix", gen(Arrow(Arrow(a, a), a))}
)
}

Here’s an example how the type inferencer can be used. Let’s define a function
showType which returns the type of a given term computed in the predefined en-
vironment Predefined.env:

object testInfer {
def showType(e: Term): String =
try {
typelInfer.typeOf(predefined.env, e).toString
} catch {
case typelnfer.TypeError(msg) =>
"\n cannot type: " + typelnfer.current +

"\n reason: + msg

Then the application

> testInfer.showType(Lam("x", App(App(Var("cons"), Var("x")), Var("nil"))))

would give the response

> (a6->List[a6])

To make the type inferencer more useful, we complete it with a parser. Function
main of module testInfer parses and typechecks a Mini-ML expression which is
given as the first command line argument.

def main(args: Array[String]) {
val ps = new ParseString(args(0)) with MiniMLParsers
ps.all(ps.input) match {
case Some(term, _) =>
println("" + term +
case None =>
println("syntax error")

+ showType(term))

}
}
}// testInfer

To do the parsing, method main uses the combinator parser scheme of Chapter 14.
It creates a parser family ps as a mixin composition of parsers that understand Min-
iML (but do not know where input comes from) and parsers that read input from a
given string. The MiniMLParsers object implements parsers for the following gram-
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mar
term ::= "\" ident "." term
| terml {terml}
| "let" ident "=" term "in" term
terml ::= ident
[ "(" term ")"
all 1= term ";"

Input as a whole is described by the production all; it consists of a term followed by
a semicolon. We allow “whitespace” consisting of one or more space, tabulator or
newline characters between any two lexemes (this is not reflected in the grammar
above). Identifiers are defined as in Chapter 14 except that an identifier cannot be
one of the two reserved words "let" and "in".

trait MiniMLParsers extends CharParsers {

/** whitespace */
def whitespace = rep{chr(’ ’) ||| chr(’\t’) ||| chr(’\n’)}

/#% A given character, possible preceded by whitespace =/
def wschr(ch: Char) = whitespace &&& chr(ch)

/+*+ identifiers or keywords */
def id: Parser[String] =
for {
c: Char <- whitespace &&& chrSuchThat(Character.isLetter)
cs: List[Char] <- rep(chrSuchThat(Character.isLetterOrDigit))

} yield (c :: cs).mkString("", "", "")
/*#% Non-keyword identifiers =/
def ident: Parser[String] =
for { s <- id if s != "let" && s != "in" } yield s
/%% term = ’\’ ident ’.’ term | terml {terml} | let ident "=" term in term =/

def term: Parser[Term] = (

( for {
_ <= wschr(’\\’)
X <- ident
_ <= wschr(’.”)
t <- term

} yield Lam(x, t): Term )
[1]

( for {
letid <- id if letid == "let"
X <- ident

_ <= wschr(’=’)
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t <~ term;
inid <- id; inid == "in"
Cc <- term

} vield Let(x, t, c) )
I
( for {
t <- terml
ts <- rep(terml)
} vield (t /: ts)((f, arg) => App(f, arg)) )
)

/#*% terml = ident | '(’ term ’)’ =/
def terml: Parser[Term] = (
( for { s <- ident }
yield Var(s): Term )
I
( for {
_ <= wschr(’(’)
t <- term
_ <= wschr(’)’)
} vield t )
)

/*% all = term ’;’ */
def all: Parser[Term] =
for {
t <- term
_ <= wschr(’;’)
} vield t
}

Here are some sample MiniML programs and the output the type inferencer gives
for each of them:

> java testInfer
| "\x.\f.f(f x);"
O\x.(\f.(f (f x)))): (a8->((a8->a8)->a8))

> java testInfer

| "let id = \x.x

| in if (id true) (id nil) (id (cons zero nil));"

let id = (\x.x) in (((if (id true)) (id nil)) (id ((cons zero) nil))): List[Int]

> java testInfer
| "let id = \x.x
| in if (id true) (id nil);"
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let id = (\x.x) in ((if (id true)) (id nil)): (List[al3]->List[al3])

> java testInfer
| "let length = fix (\len.\xs.

| if (isEmpty xs)

| zero

| (succ (len (tail xs))))

| in (length nil);"

let length = (fix (\len.(\xs.(((if (isEmpty xs)) zero)
(succ (len (tail xs))))))) in (length nil): Int

> java testInfer
| "let id = \x.x
| in if (id true) (id nil) zero;"
let id = (\x.x) in (((if (id true)) (id nil)) zero):
cannot type: zero
reason: cannot unify Int with List[al4]

Exercise 15.0.2 Using the parser library constructed in Exercise Exercise 14.2.1,

modify the MiniML parser library so that no marker “;” is necessary for indicating
the end of input.

Exercise 15.0.3 Extend the Mini-ML parser and type inferencer with a letrec con-
struct which allows the definition of recursive functions. Syntax:

letrec ident "=" term in term .

The typing of letrec is as for let, except that the defined identifier is visible in the
defining expression. Using letrec, the 1length function for lists can now be defined
as follows.

letrec length = \xs.
if (isEmpty xs)
Zero
(succ (length (tail xs)))
in ...
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Abstractions for Concurrency

This section reviews common concurrent programming patterns and shows how
they can be implemented in Scala.

16.1 Signals and Monitors

Example 16.1.1 The monitor provides the basic means for mutual exclusion of pro-
cesses in Scala. Every instance of class AnyRef can be used as a monitor by calling
one or more of the methods below.

def synchronized[A] (e: => A): A
def wait()

def wait(msec: Long)

def notify()

def notifyAll()

The synchronized method executes its argument computation e in mutual exclu-
sive mode — at any one time, only one thread can execute a synchronized argument
of a given monitor.

Threads can suspend inside a monitor by waiting on a signal. Threads that call the
wait method wait until a notify method of the same object is called subsequently
by some other thread. Calls to notify with no threads waiting for the signal are
ignored.

There is also a timed form of wait, which blocks only as long as no signal was re-
ceived or the specified amount of time (given in milliseconds) has elapsed. Fur-
thermore, there is a notifyAll method which unblocks all threads which wait for
the signal. These methods, as well as class Monitor are primitive in Scala; they are
implemented in terms of the underlying runtime system.
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Typically, a thread waits for some condition to be established. If the condition does
not hold at the time of the wait call, the thread blocks until some other thread has
established the condition. It is the responsibility of this other thread to wake up
waiting processes by issuing a notify or notifyAll. Note however, that there is no
guarantee that a waiting process gets to run immediately after the call to notify is is-
sued. It could be that other processes get to run first which invalidate the condition
again. Therefore, the correct form of waiting for a condition C uses a while loop:

while (!C) wait()

As an example of how monitors are used, here is is an implementation of a bounded
buffer class.

class BoundedBuffer[A](N: Int) {
var in = 0, out =0, n =0
val elems = new Array[A](N)

def put(x: A) = synchronized {
while (n >= N) wait()
elems(in) = x ; in=((An + 1) %$N ;n=n+1
if (n == 1) notifyAll(Q)

}

def get: A = synchronized {
while (n == 0) wait()
val x = elems(out) ; out = (out + 1) ¥ N ; n=n -1
if (n == N - 1) notifyAll()
X
}
}

And here is a program using a bounded buffer to communicate between a producer
and a consumer process.

import scala.concurrent.ops._

val buf = new BoundedBuffer[String](10)
spawn { while (true) { val s = produceString ; buf.put(s) } }
spawn { while (true) { val s = buf.get ; consumeString(s) } }

}

The spawn method spawns a new thread which executes the expression given in the
parameter. It is defined in object concurrent . ops as follows.

def spawn(p: => Unit) {
val t = new Thread() { override def run() = p }
t.start()
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16.2 SyncVars

A synchronized variable (or syncvar for short) offers get and put operations to read
and set the variable. get operations block until the variable has been defined. An
unset operation resets the variable to undefined state.

Here’s the standard implementation of synchronized variables.

package scala.concurrent
class SyncVar[A] {
private var isDefined: Boolean = false
private var value: A = _
def get = synchronized {
while (!isDefined) wait()
value
}
def set(x: A) = synchronized {
value = x; isDefined = true; notifyAll()
}
def isSet: Boolean = synchronized {
isDefined
}
def unset = synchronized {
isDefined = false

16.3 Futures

A future is a value which is computed in parallel to some other client thread, to be
used by the client thread at some future time. Futures are used in order to make
good use of parallel processing resources. A typical usage is:

import scala.concurrent.ops._

val x = future(someLengthyComputation)
anotherLengthyComputation
val v = £f(x()) + g(x())

The future method is defined in object scala.concurrent.ops as follows.

def future[A](p: => A): Unit => A = {
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val result = new SyncVar[A]
fork { result.set(p) }
(() => result.get)

}

The future method gets as parameter a computation p to be performed. The type
of the computation is arbitrary; it is represented by future’s type parameter a. The
future method defines a guard result, which takes a parameter representing the
result of the computation. It then forks off a new thread that computes the result
and invokes the result guard when it is finished. In parallel to this thread, the func-
tion returns an anonymous function of type a. When called, this functions waits on
the result guard to be invoked, and, once this happens returns the result argument.
At the same time, the function reinvokes the result guard with the same argument,
so that future invocations of the function can return the result immediately.

16.4 Parallel Computations

The next example presents a function par which takes a pair of computations as
parameters and which returns the results of the computations in another pair. The
two computations are performed in parallel.

The function is defined in object scala.concurrent.ops as follows.

def par[A, B](xp: => A, yp: = B): (A, B) = {
val y = new SyncVar[B]
spawn { y set yp }
(xp, y.get)

}

Defined in the same place is a function replicate which performs a number of
replicates of a computation in parallel. Each replication instance is passed an inte-
ger number which identifies it.

def replicate(start: Int, end: Int)(p: Int => Unit) {
if (start == end)
{}
else if (start + 1 == end)
p(start)
else {
val mid = (start + end) / 2
spawn { replicate(start, mid)(p) }
replicate(mid, end)(p)
}
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The next function uses replicate to perform parallel computations on all elements
of an array.

def parMap[A,B](f: A => B, xs: Array[A]): Array[B] = {
val results = new Array[B](xs.length)
replicate(0, xs.length) { i => results(i) = f(xs(i)) }
results

16.5 Semaphores

A common mechanism for process synchronization is a lock (or: semaphore). Alock
offers two atomic actions: acquire and release. Here’s the implementation of a lock
in Scala:

package scala.concurrent

class Lock {
var available = true
def acquire = synchronized {
while (!available) wait()
available = false

}

def release = synchronized {
available = true
notify()

}

}

16.6 Readers/Writers

A more complex form of synchronization distinguishes between readers which ac-
cess a common resource without modifying it and writers which can both access
and modify it. To synchronize readers and writers we need to implement opera-
tions startRead, startWrite, endRead, endWrite, such that:

e there can be multiple concurrent readers,
* there can only be one writer at one time,

* pending write requests have priority over pending read requests, but don’t
preempt ongoing read operations.

The following implementation of a readers/writers lock is based on the mailbox
concept (see Section 16.10).



146 Abstractions for Concurrency

import scala.concurrent._

class ReadersWriters {
val m = new MailBox
private case class Writers(n: Int), Readers(n: Int) { m send this }
Writers(0); Readers(0)
def startRead = m receive {
case Writers(n) if n == 0 => m receive {
case Readers(n) => Writers(0); Readers(n+1l)
}
}
def startWrite = m receive {
case Writers(n) =>
Writers(n+1)
m receive { case Readers(n) if n == 0 => }
}
def endRead = m receive {
case Readers(n) => Readers(n-1)

}
def endWrite = m receive {

case Writers(n) => Writers(n-1); if (n == 0) Readers(0)
3

}

16.7 Asynchronous Channels

A fundamental way of interprocess communication is the asynchronous channel.
Its implementation makes use the following simple class for linked lists:

class LinkedList[A] {
var elem: A = _
var next: LinkedList[A] = null

}

To facilitate insertion and deletion of elements into linked lists, every reference into
a linked list points to the node which precedes the node which conceptually forms
the top of the list. Empty linked lists start with a dummy node, whose successor is
null.

The channel class uses a linked list to store data that has been sent but not read yet.
At the opposite end, threads that wish to read from an empty channel, register their
presence by incrementing the nreaders field and waiting to be notified.

package scala.concurrent
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class Channel[A] {
class LinkedList[A] {
var elem: A = _
var next: LinkedList[A] = null
}
private var written = new LinkedList[A]
private var lastWritten = written
private var nreaders = 0

def write(x: A) = synchronized {
lastWritten.elem = x
lastWritten.next = new LinkedList[A]
lastWritten = lastWritten.next
if (nreaders > 0) notify()

}
def read: A = synchronized {
if (written.next == null) {
nreaders = nreaders + 1; wait(); nreaders = nreaders - 1
}

val x = written.elem
written = written.next
X

16.8 Synchronous Channels

Here’s an implementation of synchronous channels, where the sender of a message
blocks until that message has been received. Synchronous channels only need a
single variable to store messages in transit, but three signals are used to coordinate
reader and writer processes.

package scala.concurrent

class SyncChannel[A] {
private var data: A = _
private var reading = false
private var writing = false

def write(x: A) = synchronized {
while (writing) wait()
data = x
writing = true
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if (reading) notifyAll()
else while (!reading) wait()

}

def read: A = synchronized {
while (reading) wait()
reading = true
while (!writing) wait()
val x = data
writing = false
reading = false
notifyAll()
X

16.9 Workers

Here’s an implementation of a compute server in Scala. The server implements a
future method which evaluates a given expression in parallel with its caller. Unlike
the implementation in Section 16.3 the server computes futures only with a prede-
fined number of threads. A possible implementation of the server could run each
thread on a separate processor, and could hence avoid the overhead inherent in
context-switching several threads on a single processor.

import scala.concurrent._, scala.concurrent.ops._
class ComputeServer(n: Int) {

private abstract class Job {
type T
def task: T
def ret(x: T)

}

private val openJobs = new Channel[Job]()

private def processor(i: Int) {
while (true) {
val job = openJobs.read
job.ret(job.task)
}
3



16.9 Workers 149

def future[A]l(p: => A): () = A = {
val reply = new SyncVar[A]()
openJobs.write{
new Job {
type T = A
def task = p
def ret(x: A) = reply.set(x)
}
}
() => reply.get
}

spawn(replicate(0, n) { processor })

}

Expressions to be computed (i.e. arguments to calls of future) are written to the
openJobs channel. A jobis an object with

* An abstract type t which describes the result of the compute job.

* A parameterless task method of type t which denotes the expression to be
computed.

* A return method which consumes the result once it is computed.

The compute server creates n processor processes as part of its initialization. Every
such process repeatedly consumes an open job, evaluates the job’s task method and
passes the result on to the job’s return method. The polymorphic future method
creates a new job where the return method is implemented by a guard named reply
and inserts this job into the set of open jobs by calling the isOpen guard. It then waits
until the corresponding reply guard is called.

The example demonstrates the use of abstract types. The abstract type t keeps track
of the result type of a job, which can vary between different jobs. Without abstract
types it would be impossible to implement the same class to the user in a statically
type-safe way, without relying on dynamic type tests and type casts.

Here is some code which uses the compute server to evaluate the expression 41 + 1.

object Test with Executable {
val server = new ComputeServer(1l)
val f = server.future(41l + 1)
println(f())

}
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16.10 Mailboxes

Mailboxes are high-level, flexible constructs for process synchronization and com-
munication. They allow sending and receiving of messages. A message in this con-
text is an arbitrary object. There is a special message TIMEOUT which is used to signal
a time-out.

case object TIMEOUT

Mailboxes implement the following signature.

class MailBox {

def send(msg: Any)

def receive[A](f: PartialFunction[Any, A]): A

def receiveWithin[A](msec: Long) (f: PartialFunction[Any, A]): A
}

The state of a mailbox consists of a multi-set of messages. Messages are added to
the mailbox the send method. Messages are removed using the receive method,
which is passed a message processor f as argument, which is a partial function from
messages to some arbitrary result type. Typically, this function is implemented as a
pattern matching expression. The receive method blocks until there is a message
in the mailbox for which its message processor is defined. The matching message is
then removed from the mailbox and the blocked thread is restarted by applying the
message processor to the message. Both sent messages and receivers are ordered
in time. A receiver r is applied to a matching message m only if there is no other
{message, receiver} pair which precedes m, r in the partial ordering on pairs that
orders each component in time.

As a simple example of how mailboxes are used, consider a one-place buffer:

class OnePlaceBuffer {

private val m = new MailBox // An internal mailbox
private case class Empty, Full(x: Int) // Types of messages we deal with
m send Empty // Initialization

def write(x: Int)

{ m receive { case Empty => m send Full(x) } }
def read: Int =

m receive { case Full(x) => m send Empty; x }

Here’s how the mailbox class can be implemented:

class MailBox {
private abstract class Receiver extends Signal {
def isDefined(msg: Any): Boolean
var msg = null
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We define an internal class for receivers with a test method isDefined, which indi-
cates whether the receiver is defined for a given message. The receiver inherits from
class Signal a notify method which is used to wake up a receiver thread. When the
receiver thread is woken up, the message it needs to be applied to is stored in the
msg variable of Receiver.

private val sent = new LinkedList[Any]

private var lastSent = sent

private val receivers = new LinkedList[Receiver]
private var lastReceiver = receivers

The mailbox class maintains two linked lists, one for sent but unconsumed mes-
sages, the other for waiting receivers.

def send(msg: Any) = synchronized {
var r = receivers, rl = r.next
while (rl !'= null && !'rl.elem.isDefined(msg)) {
r =rl; rl = rl.next
}
if (rl != null) {
r.next = rl.next; rl.elem.msg = msg; rl.elem.notify
} else {
lastSent = insert(lastSent, msg)

The send method first checks whether a waiting receiver is applicable to the sent
message. If yes, the receiver is notified. Otherwise, the message is appended to the
linked list of sent messages.

def receive[A](f: PartialFunction[Any, A]): A = {
val msg: Any = synchronized {
var s = sent, sl = s.next
while (sl != null && !f.isDefinedAt(sl.elem)) {
s = sl; sl = sl.next
b
if (sl != null) {
s.next = sl.next; sl.elem
} else {
val r = insert(lastReceiver, new Receiver {
def isDefined(msg: Any) = f.isDefinedAt(msg)
9
lastReceiver = r
r.elem.wait()
r.elem.msg
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}
}
f(msg)
}

The receive method first checks whether the message processor function f can be
applied to a message that has already been sent but that was not yet consumed. If
yes, the thread continues immediately by applying f to the message. Otherwise, a
new receiver is created and linked into the receivers list, and the thread waits for
a notification on this receiver. Once the thread is woken up again, it continues by
applying f to the message that was stored in the receiver. The insert method on
linked lists is defined as follows.

def insert(l: LinkedList[A], x: A): LinkedList[A] = {
1l.next = new LinkedList[A]
1l.next.elem = x
1l.next.next = 1l.next
1

The mailbox class also offers a method receiveWithin which blocks for only a speci-
fied maximal amount of time. If no message is received within the specified time in-
terval (given in milliseconds), the message processor argument f will be unblocked
with the special TIMEOUT message. The implementation of receiveWithin is quite
similar to receive:

def receiveWithin[A](msec: Long)(f: PartialFunction[Any, A]): A = {
val msg: Any = synchronized {
var s = sent, sl = s.next
while (sl != null && !f.isDefinedAt(sl.elem)) {
s = sl; sl = sl.next
}
if (sl != null) {
s.next = sl.next; sl.elem
} else {
val r = insert(lastReceiver, new Receiver {
def isDefined(msg: Any) = f.isDefinedAt(msg)
19
lastReceiver = r
r.elem.wait(msec)
if (r.elem.msg == null) r.elem.msg = TIMEOUT
r.elem.msg
}
}
f(msg)
}
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} // end MailBox

The only differences are the timed call to wait, and the statement following it.

16.11 Actors

Chapter 2 sketched as a program example the implementation of an electronic auc-
tion service. This service was based on high-level actor processes that work by in-
specting messages in their mailbox using pattern matching. A refined and opti-
mized implementation of actors is found in the scala.actors package. We now
give a sketch of a simplified version of the actors library.

The code below is different from the implementation in the scala.actors package,
so it should be seen as an example how a simple version of actors could be imple-
mented. It is not a description how actors are actually defined and implemented in
the standard Scala library. For the latter, please refer to the Scala API documenta-
tion.

A simplified actor is just a thread whose communication primitives are those of a
mailbox. Such an actor can be defined as a mixin composition extension of Java’s
standard Thread class with the MailBox class. We also override the run method of
the Thread class, so that it executes the behavior of the actor that is defined by its
act method. The ! method simply calls the send method of the MailBox class:

abstract class Actor extends Thread with MailBox {
def act(): Unit
override def run(): Unit = act()
def !(msg: Any) = send(msg)

}
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Preface

Scala is a Java-like programming language which unifies object-oriented and func-
tional programming. It is a pure object-oriented language in the sense that every
value is an object. Types and behavior of objects are described by classes. Classes
can be composed using mixin composition. Scala is designed to work seamlessly
with two less pure but mainstream object-oriented languages — Java and C#.

Scala is a functional language in the sense that every function is a value. Nesting of
function definitions and higher-order functions are naturally supported. Scala also
supports a general notion of pattern matching which can model the algebraic types
used in many functional languages.

Scala has been designed to interoperate seamlessly with Java (an alternative imple-
mentation of Scala also works for .NET). Scala classes can call Java methods, create
Java objects, inherit from Java classes and implement Java interfaces. None of this
requires interface definitions or glue code.

Scala has been developed from 2001 in the programming methods laboratory at
EPFL. Version 1.0 was released in November 2003. This document describes the
second version of the language, which was released in March 2006. It acts a refer-
ence for the language definition and some core library modules. Itis notintended to
teach Scala or its concepts; for this there are other documents [0a04, Ode06, OZ05b,
OCRZ03b, OZ05a].

Scala has been a collective effort of many people. The design and the implementa-
tion of version 1.0 was completed by Philippe Altherr, Vincent Cremet, Gilles Dubo-
chet, Burak Emir, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-
man, Matthias Zenger, and the author. Iulian Dragos, Gilles Dubochet, Philipp
Haller, Sean McDirmid and Lex Spoon joined in the effort to develop the sec-
ond version of the language and tools. Gilad Bracha, Craig Chambers, Erik Ernst,
Matthias Felleisen, Shriram Krishnamurti, Gary Leavens, Sebastian Maneth, Erik
Meijer, Klaus Ostermann, Didier Rémy, Mads Torgersen, and Philip Wadler have
shaped the design of the language through lively and inspiring discussions and
comments on previous versions of this document. The contributors to the Scala
mailing list have also given very useful feedback that helped us improve the lan-
guage and its tools.






Chapter 17

Lexical Syntax

Scala programs are written using the Unicode character set. This chapter defines
the two modes of Scala’s lexical syntax, the Scala mode and the XML mode. If
not otherwise mentioned, the following descriptions of Scala tokens refer to Scala
mode, and literal characters ‘c’ refer to the ASCII fragment \u0000-\u007F.

In Scala mode, Unicode escapes are replaced by the corresponding Unicode charac-
ter with the given hexadecimal code.

UnicodeEscape ::= \{\\}u{u} hexDigit hexDigit hexDigit hexDigit
hexDigit =07 | oo 9T | A e At ] R

To construct tokens, characters are distinguished according to the following classes
(Unicode general category given in parentheses):

1. Whitespace characters. \u0020 | \u0009 | \u000D | \u000A

2. Letters, which include lower case letters(Ll), upper case letters(Lu), title-
case letters(Lt), other letters(Lo), letter numerals(NI) and the two characters
\u0024 ‘$’ and \u0OO5F ‘_’, which both count as upper case letters

3. Digits ‘0’ | ... | ‘9’.

4. Parentheses ‘C’ | )’ | ‘[ | ‘1" | “{" | “}".

5. Delimiter characters ““’ | “’’ | ‘"’ | “.7 | 57 | “,".

6. Operator characters. These consist of all printable ASCII characters

\u0020-\u007F. which are in none of the sets above, mathematical sym-
bols(Sm) and other symbols(So).
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17.1 Identifiers

Syntax:
op = opchar {opchar}
varid = Jlower idrest
plainid = upper idrest
| varid
| op
id = plainid
|  “\‘’string chars‘\‘’
idrest = {letter | digit} [‘_’ op]

There are three ways to form an identifier. First, an identifier can start with a letter
which can be followed by an arbitrary sequence of letters and digits. This may be
followed by underscore ‘_’ characters and another string composed of either letters
and digits or of operator characters. Second, an identifier can start with an operator
character followed by an arbitrary sequence of operator characters. The preceding
two forms are called plainidentifiers. Finally, an identifier may also be formed by an
arbitrary string between back-quotes (host systems may impose some restrictions
on which strings are legal for identifiers). The identifier then is composed of all
characters excluding the backquotes themselves.

As usual, a longest match rule applies. For instance, the string

big_bob++=‘def*

decomposes into the three identifiers big_bob, ++=, and def. The rules for pattern
matching further distinguish between variable identifiers, which start with a lower
case letter, and constant identifiers, which do not.

The ‘$’ character is reserved for compiler-synthesized identifiers. User programs
should not define identifiers which contain ‘$’ characters.

The following names are reserved words instead of being members of the syntactic
class id of lexical identifiers.

abstract case catch class def
do else extends false final
finally for if implicit import
match new null object override
package private protected requires return
sealed super this throw trait
try true type val var
while with yield

: = => <- <: <% > # @

The Unicode operator \u21D2 ‘=’, which has the ASCII equivalent ‘=>’, is also re-
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served.

Example 17.1.1 Here are examples of identifiers:

X Object maxIndex p2p empty_?
+ ‘yield® apeTn _y dot_product_x=
__system _MAX_LEN_

Example 17.1.2 Backquote-enclosed strings are a solution when one needs to ac-
cess Java identifiers that are reserved words in Scala. For instance, the statement
Thread.yield() is illegal, since yield is a reserved word in Scala. However, here’s a
work-around:

Thread. ‘yield‘ ()

17.2 Newline Characters

Syntax:

semi ::= “;’ | nl {nl}

Scala is a line-oriented language where statements may be terminated by semi-
colons or newlines. A newline in a Scala source text is treated as the special token
“nl” if the three following criteria are satisfied:

1. The token immediately preceding the newline can terminate a statement.
2. The token immediately following the newline can begin a statement.
3. The token appears in a region where multiple statements are allowed.
The tokens that can terminate a statement are: literals, identifiers and the following
delimiters and reserved words:
this null true false return type <xml-start>

- ) ] ¥

The tokens that can begin a statement are all Scala tokens except the following de-
limiters and reserved words:

catch else extends finally match requires with
yield , . ; : _ = => <- <: <% >
#00 ) ] ¥

A case token can begin a statement only if followed by a class or object token.

Multiple statements are allowed in:
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1. all of a Scala source file, except for nested regions where newlines are sup-
pressed, and

2. the interval between matching { and } brace tokens, except for nested regions
where newlines are suppressed.

Multiple statements are disabled in:

1. the interval between matching ( and ) parenthesis tokens, except for nested
regions where newlines are enabled, and

2. the interval between matching [ and ] bracket tokens, except for nested re-
gions where newlines are enabled.

3. The interval between a case token and its matching => token, except for
nested regions where newlines are enabled.

4. Anyregions analyzed in XML mode (§17.5).

Note that the brace characters of {.. .} escapes in XML and string literals are not
tokens, and therefore do not enclose a region where newlines are enabled.

Normally, only a single nl token is inserted between two consecutive non-newline
tokens which are on different lines, even if there are multiple lines between the two
tokens. However, if two tokens are separated by at least one completely blank line
(i.e a line which contains no printable characters), then two nl tokens are inserted.

The Scala grammar (given in full in Appendix A) contains productions where op-
tional nl tokens, but not semicolons, are accepted. This has the effect that a new-
line in one of these positions does not terminate an expression or statement. These
positions can be summarized as follows:

Multiple newline tokens are accepted in the following places (note that a semicolon
in place of the newline would be illegal in every one of these cases):

— between the condition of an conditional expression (§22.15) or while loop
(§22.16) and the next following expression,

— between the enumerators of a for-comprehension (§22.18) and the next fol-
lowing expression, and

— after the initial type keyword in a type definition or declaration (§20.3).
A single new line token is accepted

— in front of an opening brace “{”, if that brace is a legal continuation of the
current statement or expression,

— after an infix operator, if the first token on the next line can start an expression
(§22.11),
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— in front of a parameter clause (§20.6), and

— after an annotation (§27).

Example 17.2.1 The following code contains four well-formed statements, each on
two lines. The newline tokens between the two lines are not treated as statement

separators.

if (x> 0)
x=x-1

while (x > 0)
X =x/ 2

for (x <- 1 to 10)
Console.println(x)

type
Intlist = List[int]

Example 17.2.2 The following code designates an anonymous class

new Iterator[int]

{
private var x = 0
def hasNext = true
def next = { x += 1; x }

}

With an additional newline character, the same code is interpreted as an object cre-
ation followed by a local block:

new Iterator[int]

{
private var x = 0
def hasNext = true
def next = { x += 1; x }

Example 17.2.3 The following code designates a single expression:

Xx <0 ||
x > 10

With an additional newline character, the same code is interpreted as two expres-
sions:



164 Lexical Syntax

X <0 ||

x > 10

Example 17.2.4 The following code designates a single, curried function definition:
def func(x: Int)
(v: Int) =x +vy
With an additional newline character, the same code is interpreted as an abstract

function definition and a syntactically illegal statement:

def func(x: Int)

(v: Int) =x +vy

Example 17.2.5 The following code designates an attributed definition:

@serializable
protected class Data { ... }

With an additional newline character, the same code is interpreted as an attribute
and a separate statement (which is syntactically illegal).

@serializable

protected class Data { ... }

17.3 Literals

There are literals for integer numbers, floating point numbers, characters, booleans,
symbols, strings. The syntax of these literals is in each case as in Java.

Syntax:

Literal = integerLiteral
| floatingPointLiteral
| booleanLiteral

| characterLiteral

| stringLiteral

I

symbollLiteral

17.3.1 Integer Literals

Syntax:
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integerLiteral ::= (decimalNumeral | hexNumeral | octalNumeral) ['L’ | ’1’]
decimalNumeral ::= ‘0’ | nonZeroDigit {digit}

hexNumeral i:= ‘0’ 'x’ hexDigit {hexDigit}

octalNumeral ::= ‘0’ octalDigit {octalDigit}

digit ::= ‘0’ | nonZeroDigit

nonZeroDigit ::= ‘1’ | ... | ‘9’

octalDigit HEE T O L S Y

Integer literals are usually of type Int, or of type Long when followed by a L or 1
suffix. Values of type Int are all integer numbers between —23! and 23! — 1, inclu-
sive. Values of type long are all integer numbers between —2% and 2% 1, inclusive.
A compile-time error occurs if an integer literal denotes a number outside these
ranges.

However, if the expected type pt (§22) of a literal in an expression is either byte,
short, or char and the integer number fits in the numeric range defined by the type,
then the number is converted to type pt and the literal’s type is pt. The numeric
ranges given by these types are:

byte -27t02" -1
short —2¢tg 2151
char 0to2%-1

Example 17.3.1 Here are some integer literals:

0 =21 OXFFFFFFFF 0777L

17.3.2 Floating Point Literals

Syntax:
floatingPointLiteral ::= digit {digit} ‘.’ {digit} [exponentPart] [floatType]
[ “.7 digit {digit} [exponentPart] [floatType]
[ digit {digit} exponentPart [floatType]
| digit {digit} floatType
exponentPart i:= (CCE’ | ’e’) [’+7 | ’-’] digit {digit}
floatType = F’ | ’f | D’ | ’d’

Floating point literals are of type float when followed by a floating point type suffix
For £, and are of type double otherwise. The type float consists of all IEEE 754 32-
bit single-precision binary floating point values, whereas the type double consists
of all IEEE 754 64-bit double-precision binary floating point values.

Example 17.3.2 Here are some floating point literals:

0.0 le30f 3.14159f 1.0e-100 1
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17.3.3 Boolean Literals
Syntax:

booleanliteral ::= true | false

The boolean literals true and false are members of type boolean.

17.3.4 Character Literals
Syntax:
characterLiteral ::= ‘\’’ printableChar ‘\’’

|  “\’’ charEscapeSeq ‘\’’

A character literal is a single character enclosed in quotes. The character is either a
printable unicode character or is described by an escape sequence (§17.3.6).

Example 17.3.3 Here are some character literals:

a’ ’\u0041’ ’\n’ \t’

Note that "\u000A’ is not a valid character literal because Unicode conversion is
done before literal parsing and the Unicode character \u000A (line feed), and is not
a printable character. One can use instead the escape sequence ‘\n’ or the octal
escape ‘\12’ (§17.3.6).

17.3.5 String Literals

Syntax:
stringliteral = ‘\"’ {stringElement} ‘\"’
stringElement = printableCharNoDoubleQuote | charEscapeSeq

A string literal is a sequence of characters in double quotes. The characters are ei-
ther printable unicode character or are described by escape sequences (§17.3.6). If
the string literal contains a double quote character, it must be escaped, i.e. \". The
value of a string literal is an instance of class String.

Example 17.3.4 Here are some string literals:

"Hello, \nWorld!"
"This string contains a \" character."

Multi-Line String Literals

Syntax:
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[RIAIRIN) crrInny

multiLineChars
{[’"’]1 [’"’] charNoDoubleQuote}

stringliteral
multilineChars ::

A multi-line string literal is a sequence of characters enclosed in triple quotes
"o L. """, The sequence of characters is arbitrary, except that it may not con-
tain a triple quote. Characters must not necessarily be printable; newlines or other
control characters are also permitted. Unicode escapes work as everywhere else,
but none of the escape sequences in (§17.3.6) is interpreted.

Example 17.3.5 Here is a multi-line string literal:

the present string
spans three
1ines. mirn

This would produce the string:

the present string
spans three
lines.

The Scala library contains a utility method stripMargin which can be used to strip
leading whitespace from multi-line strings. The expression

the present string
| spans three
|lines.""".stripMargin

evaluates to

the present string
spans three
lines.

Method stripMargin is defined in class scala.runtime.RichString. Because there

is a predefined implicit conversion (§22.24) from String to RichString, the method
is applicable to all strings.

17.3.6 Escape Sequences

The following escape sequences are recognized in character and string literals.



168 Lexical Syntax

\b \u0008: backspace BS

\t \u0009: horizontal tab HT
\n \u000a: linefeed LF

\f \u000c: form feed FF

\r \u000d: carriage return CR
\" \u0022: double quote "

\’ \u0027: single quote’

\\ \u0009: backslash \

A character with Unicode between 0 and 255 may also be represented by an octal
escape, i.e. a backslash ‘\’ followed by a sequence of up to three octal characters.

Itis a compile time error if a backslash character in a character or string literal does
not start a valid escape sequence.

17.3.7 Symbol literals

Syntax:

symbollLiteral 1= idrest
A symbol literal ’x is a shorthand for the expression scala.Symbol("x").intern.
Symbol is a case class (§21.3.2), which is defined as follows.

package scala

final case class Symbol(name: String) {
override def toString(): String = "’"
def intern: Symbol = ...

}

+ name

The intern method turns symbols into unique references: If two interned symbols
have the same name, then they must be the same object.

17.4 Whitespace and Comments

Tokens may be separated by whitespace characters and/or comments. Comments
come in two forms:

A single-line comment is a sequence of characters which starts with //and extends
to the end of the line.

A multi-line comment is a sequence of characters between /+ and */. Multi-line
comments may be nested.
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17.5 XML mode

In order to allow literal inclusion of XML fragments, lexical analysis switches from
Scala mode to XML mode when encountering an opening angle bracket '<’ in the
following circumstance: The '<’ must be preceded either by whitespace, an opening
parenthesis or an opening brace and immediately followed by a character starting
an XML name.

Syntax:
( whitespace | (" | {’ ) ’<’ (XNameStart | ’!’ | ’?7)
XNameStart ::= ‘_’ | BaseChar | Ideographic (asin W3C XML, but without

The scanner switches from XML mode to Scala mode if either

* the XML expression or the XML pattern started by the initial ‘<’ has been suc-
cessfully parsed, or if

 the parser encounters an embedded Scala expression or pattern and forces
the Scanner back to normal mode, until the Scala expression or pattern is suc-
cessfully parsed. In this case, since code and XML fragments can be nested,
the parser has to maintain a stack that reflects the nesting of XML and Scala
expressions adequately.

Note that no Scala tokens are constructed in XML mode, and that comments are
interpreted as text.

Example 17.5.1 The following value definition uses an XML literal with two em-
bedded Scala expressions

val b = <book>
<title>The Scala Language Specification</title>
<version>{scalaBook.version}</version>

<authors>{scalaBook.authors.mkList("", ", ", "")}</authors>
</book>






Chapter 18

|Identifiers, Names and Scopes

Names in Scala identify types, values, methods, and classes which are collectively
called entities. Names are introduced by local definitions and declarations (§20),
inheritance (§21.1.3), import clauses (§20.7), or package clauses (§25.2) which are
collectively called bindings.

Bindings of different kinds have a precedence defined on them: Definitions (local or
inherited) have highest precedence, followed by explicit imports, followed by wild-
card imports, followed by package members, which have lowest precedence.

There are two different name spaces, one for types (§19) and one for terms (§22).
The same name may designate a type and a term, depending on the context where
the name is used.

A binding has a scope in which the entity defined by a single name can be accessed
using a simple name. Scopes are nested. A binding in some inner scope shadows
bindings of lower precedence in the same scope as well as bindings of the same or
lower precedence in outer scopes.

Note that shadowing is only a partial order. In a situation like

val x = 1;
{ dimport p.x;

X }
neither binding of x shadows the other. Consequently, the reference to x in the third

line above would be ambiguous.

A reference to an unqualified (type- or term-) identifier x is bound by the unique
binding, which
* defines an entity with name x in the same namespace as the identifier, and

* shadows all other bindings that define entities with name x in that names-
pace.
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It is an error if no such binding exists. If x is bound by an import clause, then the
simple name x is taken to be equivalent to the qualified name to which x is mapped
by the import clause. If x is bound by a definition or declaration, then x refers to
the entity introduced by that binding. In that case, the type of x is the type of the
referenced entity.

Example 18.0.2 Assume the following two definitions of a objects named X in pack-
ages P and Q.

package P {
object X { val x = 1; valy = 2 }
}
package Q {
object X { val x = true; val y = "" }
}

The following program illustrates different kinds of bindings and precedences be-
tween them.

package P { // ‘X’ bound by package clause
import Console._ // ‘println’ bound by wildcard import
object A {
println("L4: "+X) // ‘X’ refers to ‘P.X’ here
object B {
import Q._ // ‘X’ bound by wildcard import
println("L7: "+X) // ‘X’ refers to ‘Q.X’ here
import X._ // ‘x’ and ‘y’ bound by wildcard import
println("L8: "+x) // ‘x’ refers to ‘Q.X.x’ here
object C {
val x = 3 // ‘x’ bound by local definition
println("L12: "+x) // ‘x’ refers to constant ‘3’ here
{ import Q.X._ // ‘x’ and ‘y’ bound by wildcard import
// println("L14: "+x) // reference to ‘x’ is ambiguous here
import X.y // ‘v’ bound by explicit import
println("L16: "+y) // ‘v’ refers to ‘Q.X.y’ here
{ val x = "abc" // ‘x’ bound by local definition
import P.X._ // ‘x’ and ‘y’ bound by wildcard import
// printin("L19: "+y) // reference to ‘y’ is ambiguous here

println("L20: "+x) // ‘x’ refers to string ‘‘abc’’ here

FIPr}

A reference to a qualified (type- or term-) identifier e.x refers to the member of the
type T of e which has the name x in the same namespace as the identifier. It is
an error if T is not a value type (§19.2). The type of e.x is the member type of the
referenced entity in 7.
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Syntax:
Type = InfixType [‘=>" Type]
| “C [*=>" Type] )’ *=>" Type
InfixType = CompoundType {id [nl] CompoundType}
CompoundType = AnnotType {with AnnotType} [Refinement]
AnnotType = {Annotation} SimpleType
SimpleType ::= SimpleType TypeArgs
| SimpleType ‘#’ id
| Stableld
| Path ‘.’ type
| “C Types [*,’] )’
TypeArgs i:= ‘[’ Types ‘]’
Types = Type {‘,’ Type}

We distinguish between first-order types and type constructors, which take type pa-
rameters and yield types. A subset of first-order types called value types represents
sets of (first-class) values. Value types are either concrete or abstract.

Every concrete value type can be represented as a class type, i.e. a type designator
(§19.2.3) that refers to a class' (§21.3), or as a compound type (§19.2.7) representing
an intersection of types, possibly with a refinement (§19.2.7) that further constrains
the types of its members. Abstract value types are introduced by type parameters
(§20.4) and abstract type bindings (§20.3). Parentheses in types are used for group-
ing.

Non-value types capture properties of identifiers that are not values (§19.3). For
example, a type constructor (§19.3.3) does not directly specify the type of values.
However, when a type constructor is applied to the correct type arguments, it yields

IWe assume that objects and packages also implicitly define a class (of the same name as the
object or package, but inaccessible to user programs).
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a first-order type, which may be a value type.

Non-value types are expressed indirectly in Scala. E.g., a method type is described
by writing down a method signature, which in itself is not a real type, although it
gives rise to a corresponding function type (§19.3.1). Type constructors are another
example, as one can write type Swap[m[_, _], a,b] = m[b, a], but there is no
syntax to write the corresponding anonymous type function directly.

19.1 Paths
Syntax:
Path = Stableld
| [id “.’] this
Stableld = id
| Path ‘.’ id
| [id ’.’] super [ClassQualifier] ‘.’ id
ClassQualifier = ‘[’ did ‘]’

Paths are not types themselves, but they can be a part of named types and in that
function form a central role in Scala’s type system.

A path is one of the following.

e The empty path € (which cannot be written explicitly in user programs).

e (C.this, where C references a class. The path this is taken as a shorthand for
C.this where C is the name of the class directly enclosing the reference.

* p.x where p is a path and x is a stable member of p. Stable members are
members introduced by value or object definitions, as well as packages.

e C.super.x or C.super[ M ].x where C references a class and x references a
stable member of the super class or designated parent class M of C. The prefix
super is taken as a shorthand for C.super where C is the name of the class
directly enclosing the reference.

A stable identifier is a path which ends in an identifier.

19.2 Value Types
Every value in Scala has a type which is of one of the following forms.

19.2.1 Singleton Types

Syntax:
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SimpleType ::= Path ‘.’ type

A singleton type is of the form p . type, where p is a path pointing to a value expected
to conform (§22) to scala.AnyRef. The type denotes the set of values consisting of
null and the value denoted by p.

19.2.2 Type Projection
Syntax:
SimpleType ::= SimpleType ‘#’ id

A type projection T#x references the type member named x of type T. If x refer-
ences an abstract type member, then T must be a singleton type.

19.2.3 Type Designators
Syntax:

SimpleType ::= Stableld

A type designator refers to a named value type. It can be simple or qualified. All
such type designators are shorthands for type projections.

Specifically, the unqualified type name ¢ where ¢ is bound in some class, object, or
package C is taken as a shorthand for C.this.type#¢. If ¢ is not bound in a class,
object, or package, then ¢ is taken as a shorthand for €. type#t.

A qualified type designator has the form p. t where p is a path (§19.1) and ¢ is a type
name. Such a type designator is equivalent to the type projection p . type#x.

Example 19.2.1 Some type designators and their expansions are listed below. We
assume a local type parameter £, a value maintable with a type member Node and
the standard class scala. Int,

t €.type#t
Int scala.type#Int
scala.Int scala.type#Int

data.maintable.Node data.maintable.type#Node

19.2.4 Parameterized Types

Syntax:

SimpleType
TypeArgs

SimpleType TypeArgs
[1 [ L Types [1 ] L
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A parameterized type T[Uj, ..., Uy,] consists of a type designator T and type param-
eters Uy, ..., U, where n = 1. T must refer to a type constructor which takes n type
parameters ay, ..., a.

Say the type parameters have lower bounds L;, ..., L, and upper bounds Uj, ..., Uj,.
The parameterized type is well-formed if each actual type parameter conforms to its
bounds, i.e. cL; <: T; <: cU; where o is the substitution [a; := T3, ..., a, := Ty].

Example 19.2.2 Given the partial type definitions:

class TreeMap[A <: Comparable[A], B] { ... }
class List[A] { ... }
class I extends Comparable[I] { ... }

the following parameterized types are well formed:

TreeMap[I, String]
List[I]
List[List[Boolean]]

Example 19.2.3 Given the type definitions of Example 19.2.2, the following types
are ill-formed:

TreeMap[I] // illegal: wrong number of parameters
TreeMap[List[I], Boolean] // illegal: type parameter not within bound

19.2.5 Tuple Types
Syntax:

SimpleType ii= ‘(7 Types [‘,’] ")’

A tuple type (T1, ..., Ty) is an alias for the class scala.Tuplen[Ty,..., T,1, where
n = 2. The type may also be written with a trailing comma, i.e. (T3, ..., T,). The
unary tuple type scala.Tuplel[T] can be written in tuple syntax only by using a
trailing comma, i.e. (T,).

Tuple classes are case classes whose fields can be accessed using selectors _1, ..., _n.
Their functionality is abstracted in a corresponding Product trait. The n-ary tuple
class and product trait are defined at least as follows in the standard Scala library
(they might also add other methods and implement other traits).

case class Tuplen[+T1, ..., +Tn](1: T1, ..., _n: Tn)
extends Productn[Tl, ..., Tn] {}

trait Productn[+T1, +T2, +Tn] {
override def arity = n
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def _1: T1
def _n:Tn
}

19.2.6 Annotated Types

Syntax:

AnnotType ::= <{Annotation} SimpleType
An annotated type @a; ... @a, T attaches annotations ay, ..., a, to the type T
(8§27).

19.2.7 Compound Types

Syntax:
CompoundType = AnnotType {with AnnotType} [Refinement]
Refinement = [nl] ‘{’ RefineStat {semi RefineStat} ‘}’
RefineStat Dcl

| type TypeDef
|

A compound type T; with ... with T,, {R} represents objects with members as
given in the component types T, ..., T,; and the refinement {R }. Arefinement {R }
contains declarations and type definitions. Each declaration or definition in a re-
finement must override a declaration or definition in one of the component types
T1, ..., Ty. The usual rules for overriding (§21.1.4) apply. If no refinement is given,
the empty refinement is implicitly added, i.e. T} with ... with T}, is a shorthand
for T} with ... with T, {}.

19.2.8 Infix Types
Syntax:

InfixType ::= CompoundType {id [nl] CompoundType}

An infix type T; op T» consists of an infix operator op which gets applied to two
type operands T; and T». The type is equivalent to the type application op[ T3, T>»].
The infix operator op may be an arbitrary identifier, except for «, which is reserved
as a postfix modifier denoting a repeated parameter type (§20.6.2).

All type infix operators have the same precedence; parentheses have to be used for
grouping. The associativity (§22.11) of a type operator is determined as for term op-
erators: type operators ending in a colon ‘:’ are right-associative; all other operators
are left-associative.
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In a sequence of consecutive type infix operations #, op, t; op,...op,, t,, all opera-
tors op,, ..., op,, must have the same associativity. If they are all left-associative, the
sequence is interpreted as (... (fp op; f1) op,...) op,, Iy, otherwise it is interpreted as
o op; (t1 0p, (...0p,, ty)...).

19.2.9 Function Types

Syntax:

Type ::= InfixType ‘=>’ Type
| ¢ ['=>" Type] ‘)’ ‘=>’ Type

The type (Ti,..., T,) => U represents the set of function values that take argu-
ments of types T, ..., T,, and yield results of type U. In the case of exactly one ar-
gument type T => U is ashorthand for (T) => U. Thetype (=>T) => U repre-
sents functions with call-by-name parameters (§20.6.1) of type T which yield results
of type U. Function types associate to the right, e.g. S => T => U is the same as
S = (T = U).

Function types are shorthands for class types that define apply functions. Specif-
ically, the n-ary function type (Ti,..., T,) => U is a shorthand for the class type
Functionn[Ti,..., T,,U]. Such class types are defined in the Scala library for n
between 0 and 9 as follows.

package scala

trait Functionn[-Ti,..., -T,, +R] {
def applv(xi: T1,..., x5 Typ): R
override def toString() = "<function>"
}

Hence, function types are covariant (§20.5) in their result type and contravariant in
their argument types.

A call-by-name function type (=> T) => U is a shorthand for the class type
ByNameFunction[ T, U ], which is defined as follows.

package scala
trait ByNameFunction[-T, +R] {
def apply(x: => T): R
override def toString() = "<function>"

}

19.2.10 Primitive Types Defined in Predef

The object Predef is imported implicitly into every Scala program . It contains type
definitions which establish the primitive types mentioned above as aliases of class
types. Numeric and boolean types are equated with standard Scala classes. The
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String type is equated with the string class of the underlying host system. In a Java
environment, Predef contains the following bindings, among others:

type byte = scala.Byte

type short = scala.Short

type char = scala.Char

type int = scala.Int

type long = scala.Long

type float = scala.Float

type double = scala.Double
type boolean = scala.Boolean
type String = java.lang.String

19.3 Non-Value Types

The types explained in the following do not denote sets of values, nor do they appear
explicitly in programs. They are introduced in this report as the internal types of
defined identifiers.

19.3.1 Method Types

A method type is denoted internally as (Ts)U, where (T5s) is a sequence of types

(T, ..., Ty) for some n = 0 and U is a (value or method) type. This type represents
named methods that take arguments of types T, ..., T,; and that return a result of
type U.

We let method types associate to the right: (Ts;)(Ts) U is treated as (Ts;) ((Ts2) U).

A special case are types of methods without any parameters. They are written here
=> T. Parameterless methods name expressions that are re-evaluated each time the
parameterless method name is referenced.

Method types do not exist as types of values. If a method name is used as a value, its
type is implicitly converted to a corresponding function type (§22.24).

Example 19.3.1 The declarations

def a: Int
def b (x: Int): Boolean
def ¢ (x: Int) (v: String, z: String): String

produce the typings

a: = Int
b: (Int) Boolean
c: (Int) (String, String) String



180 Types

19.3.2 Polymorphic Method Types

A polymorphic method type is denoted internally as [tps]T where [tps] is a type
parameter section [a; >: L, <: Uy,...,a, >: L, <: U,] forsomen=0and T
is a (value or method) type. This type represents named methods that take type
arguments Sy, ..., S, which conform (§19.2.4) to the lower bounds L, ..., L, and
the upper bounds Uy, ..., U, and that yield results of type T.

Example 19.3.2 The declarations

def empty[A]: List[A]

def union[A <: Comparable[A]] (x: Set[A], xs: Set[A]): Set[A]
produce the typings

empty : [A >: Nothing <: Any] List[A]
union : [A >: Nothing <: Comparable[A]] (x: Set[A], xs: Set[A]) Set[A]

19.3.3 Type Constructors

A type constructor is represented internally much like a polymorphic method type.
[+ a >: Ly <: Uy,...,xa, >: L, <: U,] T represents a type that is expected
by a type constructor parameter (§20.4) or an abstract type constructor binding
(§20.3) with the corresponding type parameter clause.

Example 19.3.3 Consider this fragment of the Tterable[+X] class:

trait Iterable[+X] {
def flatMap[newType[+X] <: Iterable[X], S](f: T => newType[S]): newType[S]
}

Conceptually, the type constructor Iterable is a name for the anonymous type
[+X] Iterable[X], which may be passed to the newType type constructor param-
eter in flatMap.

19.4 Base Types and Member Definitions

Types of class members depend on the way the members are referenced. Central
here are three notions, namely:

1. the notion of the set of base types of a type T,
2. the notion of a type T in some class C seen from some prefix type S,

3. the notion of the set of member bindings of some type T.
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These notions are defined mutually recursively as follows.

1. The set of base types of a type is a set of class types, given as follows.

* The base types of a class type C with parents 71, ..., T, are C itself, as well as
the base types of the compound type T; with ... with T, {R}.

* The base types of an aliased type are the base types of its alias.
* The base types of an abstract type are the base types of its upper bound.

* The base types of a parameterized type C[T1,..., T, ] are the base types of
type C, where every occurrence of a type parameter a; of C has been replaced
by the corresponding parameter type 7;.

* The base types of a singleton type p.type are the base types of the type of p.

* The base types of a compound type T; with ... with T, {R} are the re-
duced union of the base classes of all T;’s. This means: Let the multi-set .%
be the multi-set-union of the base types of all T;’s. If ¥ contains several type
instances of the same class, say S‘#C[ T, ..., T.1 (i € I), then all those in-
stances are replaced by one of them which conforms to all others. It is an
error if no such instance exists. It follows that the reduced union, if it exists,
produces a set of class types, where different types are instances of different
classes.

* The base types of a type selection S#T are determined as follows. If T is an
alias or abstract type, the previous clauses apply. Otherwise, T must be a (pos-
sibly parameterized) class type, which is defined in some class B. Then the
base types of S#T are the base types of T in B seen from the prefix type S.

2. The notion of a type T in class C seen from some prefix type S makes sense only if
the prefix type S has a type instance of class C as a base type, say S'#C[ Ty, ..., T,].
Then we define as follows.

e IfS = €.type, then T in C seen from S is T itself.

* Otherwise, if T is the i’th type parameter of some class D, then

- If S has a base type DI[Uy,...,U,], for some type parameters
(Ui, ..., U,], then T in C seen from S is U;.

— Otherwise, if C is defined in a class C’, then T in C seen from S is the
same as T in C’ seen from S'.

— Otherwise, if C is not defined in another class, then T in C seen from S is
T itself.

e Otherwise, if T is the singleton type D.this.type for some class D then

— If Disasubclass of C and S has a type instance of class D among its base
types, then T in C seen from S is S.
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— Otherwise, if C is defined in a class C’, then T in C seen from S is the
same as T in C' seen from S'.

— Otherwise, if C is not defined in another class, then T in C seen from S is
T itself.

e If T is some other type, then the described mapping is performed to all its
type components.

If T is a possibly parameterized class type, where T’s class is defined in some other
class D, and S is some prefix type, then we use “T seen from S” as a shorthand for
“T in D seen from S”.

3. The member bindings of a type T are all bindings d such that there exists a type
instance of some class C among the base types of T and there exists a definition or
declaration d’ in C such that d results from d’ by replacing every type T’ in d’ by T’
in C seen from T.

The definition of a type projection S#t is the member binding d; of the type ¢ in S.
In that case, we also say that S#t is defined by d;.

19.5 Relations between types
We define two relations between types.

Type equivalence T=U T and U are interchangeable in all contexts.
Conformance T<:U  Type T conforms to type U.

19.5.1 Type Equivalence

Equivalence (=) between types is the smallest congruence? such that the following
holds:

e If tis defined by a type alias type ¢ = T, then ¢is equivalent to T.
» Ifa path p has a singleton type q.type, then p.type = ¢.type.

* If Ois defined by an object definition, and p is a path consisting only of pack-
age or object selectors and ending in O, then O.this.type = p.type.

* Two compound types (§19.2.7) are equivalent if the sequences of their com-
ponent are pairwise equivalent, and occur in the same order, and their refine-
ments are equivalent. Two refinements are equivalent if they bind the same
names and the modifiers, types and bounds of every declared entity are equiv-
alent in both refinements.

2 A congruence is an equivalence relation which is closed under formation of contexts
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* Two method types (§19.3.1) are equivalent if they have equivalent result types,
both have the same number of parameters, and corresponding parameters
have equivalent types. Note that the names of parameters do not matter for
method type equivalence.

* Two polymorphic method types (§19.3.2) are equivalent if they have the same
number of type parameters, and, after renaming one set of type parameters by
another, the result types as well as lower and upper bounds of corresponding
type parameters are equivalent.

* Two type constructors (§19.3.3) are equivalent if they have the same number
of type parameters, and, after renaming one set of type parameters by an-
other, the result types as well as variances, lower and upper bounds of corre-
sponding type parameters are equivalent.

19.5.2 Conformance

The conformance relation (<:) is the smallest transitive relation that satisfies the
following conditions.

e Conformance includes equivalence. If T = U then T <: U.
* For every value type T, scala.Nothing <: T <:scala.Any.

e For every type constructor T (with any number of type parameters),
scala.Nothing <: T <:scala.Any.

* For every class type T such that T <: scala.AnyRef and not T <:
scala.NotNull one has scala.Null <: T.

* A type variable or abstract type ¢ conforms to its upper bound and its lower
bound conforms to t.

* A class type or parameterized type conforms to any of its base-types.
* Asingleton type p.type conforms to the type of the path p.
* A type projection T#t conforms to U#t if T conforms to U.

* A parameterized type T[Ty,..., T,]1 conformsto T[Uy,...,U,] if the fol-
lowing three conditions hold fori =1, ..., n.

- If the i’th type parameter of T is declared covariant, then T; <: U;.
— If the i’th type parameter of T is declared contravariant, then U; <: T;.

- If the i’th type parameter of T is declared neither covariant nor con-
travariant, then U; = T;.

* Acompound type 77 with ... with T, {R} conforms to each ofits compo-
nent types T;.
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e If T<:U;fori=1,..., nand for every binding d of a type or value x in R there
exists a member binding of x in T which subsumes d, then T conforms to the
compound type U; with ... with U, {R}.

*If T; = T/ for i = 1,...,n and U conforms to U’ then the method type
(T, ..., Tp)U conforms to (T3, ..., T))U'.

e The polymorphic type [a; >: Ly <: Uy, ..., a, >: L, <: U,]T conforms to the
polymorphic type [a; >: L} <: Uy, ..., a, >: L), <: U,]T" if, assuming L] <:
ay <:Uj,...,L}, <t a, <: Uy one has T <: T' and L; <: L; and U; <: U; for
i=1,..., n.

 Type constructors T and T’ follow a similar discipline. We characterize T

and T’ by their type parameter clauses [a, ..., a,] and [aj, ..., a,,], where
an a; or a; may include a variance annotation, a higher-order type param-
eter clause, and bounds. Then, T conforms to T’ if any list [fq, ..., t;] -

with declared variances, bounds and higher-order type parameter clauses —
of valid type arguments for 7" is also a valid list of type arguments for T and
T(f,..., t,]<:T'[f, ..., t;]. Note that this entails that:

— The bounds on a; must be weaker than the corresponding bounds de-
clared for a.

— The variance of a; must match the variance of a;., where covariance
matches covariance, contravariance matches contravariance and any
variance matches invariance.

— Recursively, these restrictions apply to the corresponding higher-order
type parameter clauses of a; and a’.

A declaration or definition in some compound type of class type C subsumes an-
other declaration of the same name in some compound type or class type C’, if one
of the following holds.

* Avalue declaration or definition that defines a name x with type T subsumes
a value or method declaration that defines x with type T’, provided T <: T".

* A method declaration or definition that defines a name x with type T sub-
sumes a method declaration that defines x with type T’, provided T <: T".

e Atypealias type t[Ty, ..., T,] = T subsumes a type alias type ¢[Ty, ..., T,] = T’
ifTr=T1.

* Atype declaration type t[T3,..., T,] >: L <: U subsumes a type declara-
tion type ¢[T1,...,T,] >: L' <: U' if'<:Land U <:U'.

* A type or class definition that binds a type name ¢ subsumes an abstract type
declaration type t[T3,...,T,] >: L <: UifL<:t<:U.

The (<:) relation forms pre-order between types, i.e. it is transitive and reflexive.
least upper bounds and greatest lower bounds of a set of types are understood to be
relative to that order.
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Note. The least upper bound or greatest lower bound of a set of types does not
always exist. For instance, consider the class definitions

class A[+T] {}
class B extends A[B]
class C extends A[C]

Then the types A[Any], A[A[Any]], A[A[A[Any]]], ... form a descending se-
quence of upper bounds for B and C. The least upper bound would be the infinite
limit of that sequence, which does not exist as a Scala type. Since cases like this are
in general impossible to detect, a Scala compiler is free to reject a term which has
a type specified as a least upper or greatest lower bound, and that bound would be
more complex than some compiler-set limit>.

The least upper bound or greatest lower bound might also not be unique. For in-
stance A with B and B with A are both least upper bounds of A and B. If there are
several least upper bounds or greatest lower bounds, the Scala compiler is free to
pick any one of them.

19.6 Type Erasure

A type is called generic if it contains type arguments or type variables. Type erasure
is a mapping from (possibly generic) types to non-generic types. We write | T| for
the erasure of type T. The erasure mapping is defined as follows.

* The erasure of an alias type is the erasure of its right-hand side.

* The erasure of an abstract type is the erasure of its upper bound.

* The erasure of the parameterized type scala.Array|T}] is scala.Array(|T1]].
* The erasure of every other parameterized type T[T1, ..., Tyl is | T|.

* The erasure of a singleton type p.type is the erasure of the type of p.

e The erasure of a type projection T#x is | T' | #x.

e The erasure of a compound type T; with ... with T, {R}is|Ty|.

e The erasure of every other type is the type itself.

3The current Scala compiler limits the nesting level of parameterization in such bounds to 10.






Chapter 20

Basic Declarations and Definitions

Syntax:

Dcl = wval ValDcl

| wvar VarDcl

| def FunDcl

| type [nl] TypeDcl
Def ::= val PatDef

| var VarDef

| def FunDef

| type [nl] TypeDef

| TmplDef

A declaration introduces names and assigns them types. It can form part of a class
definition (§21.1) or of a refinement in a compound type (§19.2.7).

A definition introduces names that denote terms or types. It can form part of an
object or class definition or it can be local to a block. Both declarations and defini-
tions produce bindings that associate type names with type definitions or bounds,
and that associate term names with types.

The scope of a name introduced by a declaration or definition is the whole state-
ment sequence containing the binding. However, there is a restriction on forward
references in blocks: In a statement sequence s; ... s, making up a block, if a simple
name in s; refers to an entity defined by s; where j > i, then none of the definitions
between and including s; and s; may be a value or variable definition.

20.1 Value Declarations and Definitions

Syntax:

Dcl ::= val ValDcl
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ValDcl r:= ids ‘:’ Type

Def ::= val PatDef

PatDef ::= Pattern2 {‘,’ Pattern2} [‘:’ Type] ‘=’ Expr
ids = did {¢,’ id}

A value declaration val x: T introduces x as a name of a value of type T.

Avalue definition val x: T = e defines x as a name of the value that results from
the evaluation of e. The type T may be omitted, in which case the type of expression
e is assumed. If a type T is given, then e is expected to conform to it (§22).

Evaluation of the value definition implies evaluation of its right-hand side e. The
effect of the value definition is to bind x to the value of e converted to type T.

Value definitions can alternatively have a pattern (§24.1) as left-hand side. If p is
some pattern other than a simple name or a name followed by a colon and a type,
then the value definition val p = e is expanded as follows:

1. If the pattern p has bound variables x;, ..., x,, where n > 1:
val $x = e match {case p => {x1,..., Xy}}
val x; = $x._1
val x, = $x._n

Here, $x is a fresh name.

2. If p has a unique bound variable x:

val x = e match { case p => x }

3. If p has no bound variables:

e match { case p => ()}

Example 20.1.1 The following are examples of value definitions

val pi = 3.1415

val pi: Double = 3.1415 // equivalent to first definition
val Some(x) = £() // a pattern definition

val x :: xs = mylist // an infix pattern definition

The last two definitions have the following expansions.

val x = £f() match { case Some(x) => x }

val x$ = mylist match { case x :: xs => {x, xs} }
val x = x$._1
val xs = x$._2
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Avalue declaration val x,..., x,: T isashorthand for the sequence of value dec-
larations val x;: T; ...; val x,: T. Avalue definition val p,...,p, = e is
a shorthand for the sequence of value definitions val p; = e; ...; val p, = e.
A value definition val p,..., p,: T = e is a shorthand for the sequence of value
definitions val p;:T = e; ...; val p,:T = e.

20.2 Variable Declarations and Definitions

Syntax:
Dcl ::= var VarDcl
Def ::= var VarDef
VarDcl 1:= dids ‘:’ Type
VarDef ::= dids [“:’ Type] ‘=’ Expr

| dids ‘:’ Type ‘=" ‘_

Avariable declaration var x: T isequivalent to declarations of a getter function x
and a setter function x_=, defined as follows:

def x: T
def x_= (y: T): unit

An implementation of a class containing variable declarations may define these
variables using variable definitions, or it may define setter and getter functions di-
rectly.

Avariable definition var x: T = e introduces a mutable variable with type T and
initial value as given by the expression e. The type T can be omitted, in which case
the type of e is assumed. If T is given, then e is expected to conform to it (§22).

A variable definition var x: T = _ can appear only as a member of a template. It
introduces a mutable field with type T and a default initial value. The default value
depends on the type T as follows:

0 if T is int or one of its subrange types,
OL if T is 1long,

0.0f if Tis float,

0.0d if T isdouble,

false if T'isboolean,

{} if T isunit,

null for all other types T.

When they occur as members of a template, both forms of variable definition also
introduce a getter function x which returns the value currently assigned to the vari-
able, as well as a setter function x_= which changes the value currently assigned to
the variable. The functions have the same signatures as for a variable declaration.
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The template then has these getter and setter functions as members, whereas the
original variable cannot be accessed directly as a template member.

Example 20.2.1 The following example shows how properties can be simulated in
Scala. It defines a class TimeOfDayVar of time values with updatable integer fields
representing hours, minutes, and seconds. Its implementation contains tests that
allow only legal values to be assigned to these fields. The user code, on the other
hand, accesses these fields just like normal variables.

class TimeOfDayVar {

private var h: Int = 0
private var m: Int = 0
private var s: Int = 0
def hours = h
def hours_= (h: Int) = if (0 <= h & h < 24) this.h = h
else throw new DateError()
def minutes = m
def minutes_= (m: Int) = if (0 <=m && m < 60) this.m = m
else throw new DateError()
def seconds = s
def seconds_= (s: Int) = if (0 <= s && s < 60) this.s = s
else throw new DateError()
}
val d = new TimeOfDayVar
d.hours = 8; d.minutes = 30; d.seconds = 0
d.hours = 25 // throws a DateError exception
A variable declaration var xj,...,x,: T is a shorthand for the se-
quence of variable declarations var x;: T; ...; var x;,: T. A vari-
able definition wvar x;,...,x, = e is a shorthand for the sequence of
variable definitions var x; = e; ...; var x, = e. A variable definition
var Xxi,...,Xx,:T = e 1is a shorthand for the sequence of variable definitions
var x;: 1T =e; ...; var x,: 1T = e.
20.3 Type Declarations and Type Aliases
Syntax:
Dcl ::= type {nl} TypeDcl
TypeDcl ::= 1id [TypeParamClause] [>: Type] [<: Typel
Def ::= type {nl} TypeDef

TypeDef ::= 1id [TypeParamClause] ‘=’ Type
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A type declaration type t[tps] >: L <: U declares t to be an abstract type with
lower bound type L and upper bound type U. If the type parameter clause [tps] is
omitted, t abstracts over a first-order type, otherwise ¢ stands for a type constructor
that accepts type arguments as described by the type parameter clause.

If a type declaration appears as a member declaration of a type, implementations
of the type may implement ¢ with any type T for which L <: T <: U. It is a compile-
time error if L does not conform to U. Either or both bounds may be omitted. If the
lower bound L is absent, the bottom type scala.Nothing is assumed. If the upper
bound U is absent, the top type scala.Any is assumed.

A type constructor declaration imposes additional restrictions on the concrete types
for which ¢ may stand. Besides the bounds L and U, the type parameter clause
may impose higher-order bounds and variances, as governed by the conformance
of type constructors (§19.5.2).

The scope of a type parameter extends over the bounds >: L <: U and the type
parameter clause tps itself. A higher-order type parameter clause (of an abstract
type constructor tc) has the same kind of scope, restricted to the declaration of the
type parameter fc.

To illustrate nested scoping, these declarations are all equivalent:
type t[m[x] <: Bound[x], Bound[x]], type t[m[x] <: Bound[x], Bound[vy]]
and type t[m[x] <: Bound[x], Bound[_]1], as the scope of, e.g., the type param-
eter of m is limited to the declaration of m. In all of them, ¢ is an abstract type
member that abstracts over two type constructors: m stands for a type constructor
that takes one type parameter and that must be a subtype of Bound, t’s second
type constructor parameter. t[MutableList, Iterable] isavalid use of t.

A type alias type t = T defines t to be an alias name for the type T. The left hand
side of a type alias may have a type parameter clause, e.g. type t[tps] = T. The
scope of a type parameter extends over the right hand side T and the type parameter
clause tpsitself.

The scope rules for definitions (§20) and type parameters (§20.6) make it possible
that a type name appears in its own bound or in its right-hand side. However, it is
a static error if a type alias refers recursively to the defined type constructor itself.
That is, the type T in a type alias type f[tps] = T may not refer directly or indi-
rectly to the name ¢. It is also an error if an abstract type is directly or indirectly its
own upper or lower bound.

Example 20.3.1 The following are legal type declarations and definitions:

type Intlist = List[Integer]

type T <: Comparable[T]

type Two[A] = Tuple2[A, A]

type MyCollection[+X] <: Iterable[X]

The following are illegal:
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type Abs = Comparable[Abs] // recursive type alias
type S <: T // S, T are bounded by themselves.
type T <: S
type T >: Comparable[T.That] // Cannot select from T.
// T is a type, not a value
type MyCollection <: Iterable // Type constructor members must explicitly state the

If a type alias type t[tps] = S refers to a class type S, the name ¢ can also be used
as a constructor for objects of type S.

Example 20.3.2 The Predef object contains a definition which establishes Pair as
an alias of the parameterized class Tuple2:

type Pair[+A, +B] = Tuple2[A, B]

As a consequence, for any two types S and T, the type Pair[S, T] is equiva-
lent to the type Tuple2[S, T]. Pair can also be used as a constructor instead
of Tuple2. Furthermore, because Tuple?2 is a case class (§21.3.2), Pair? is also an
alias for the case class factory Tuple2, and this holds for in expressions as well as
patterns. Hence, the following are all legal uses of Pair.

val x: Pair[int, String] = new Pair(1, "abc")
val y: Pair[String, Int] = x match {
case Pair(i, s) => Pair(z + i, i * i)

}

20.4 Type Parameters

Syntax:
TypeParamClause = ‘[’ VariantTypeParam {‘,’ VariantTypeParam} ‘]’
VariantTypeParam ::= [‘+’ | ‘-’] TypeParam
TypeParam = id [TypeParamClause] [>: Type] [<: Type]

Type parameters appear in type definitions, class definitions, and function defini-
tions. In this section we consider only type parameter definitions with lower bounds
>: L and upper bounds <: U whereas a discussion of view bounds <% U is de-
ferred to Section 23.4.

The most general form of a first-order type parameteris + ¢ >: L <: U. Here, L,
and U are lower and upper bounds that constrain possible type arguments for the
parameter. It is a compile-time error if L does not conform to U. + is a variance, i.e.
an optional prefix of either +, or -.
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The names of all type parameters must be pairwise different in their enclosing type
parameter clause. The scope of a type parameter includes in each case the whole
type parameter clause. Therefore it is possible that a type parameter appears as
part of its own bounds or the bounds of other type parameters in the same clause.
However, a type parameter may not be bounded directly or indirectly by itself.

A type constructor parameter adds a nested type parameter clause to the
type parameter. The most general form of a type constructor parameter is
+ fltps] >: L <: U.

The above scoping restrictions are generalized to the case of nested type parameter
clauses, which declare higher-order type parameters. Higher-order type parame-
ters (the type parameters of a type parameter ) are only visible in their immediately
surrounding parameter clause (possibly including clauses at a deeper nesting level)
and in the bounds of ¢. Therefore, their names must only be pairwise different from
the names of other visible parameters. Since the names of higher-order type pa-
rameters are thus often irrelevant, they may be denoted with a ‘_’, which is nowhere
visible.

Example 20.4.1 Here are some well-formed type parameter clauses:

[s, tl

[ex <: Throwable]

[a <: Comparable[b], b <: a]

[a, b >: a, ¢ >: a <: b]

[m[x], n[x]]

[m[_], n[_]] // equivalent to previous clause
[m[x <: bound[x]], bound[_]]

[m[+x] <: Iterable[x]]

The following type parameter clauses are illegal:

[a >: a] // illegal, ‘a’ has itself as bound
[a <: b, b<: c, c<: a]l //illegal, ‘a’ has itself as bound
[a, b, ¢ >: a <: b] // illegal lower bound ‘a’ of ‘c’ does

// not conform to upper bound ‘b’.

20.5 Variance Annotations

Variance annotations indicate how instances of parameterized types vary with re-
spect to subtyping (§19.5.2). A ‘+’ variance indicates a covariant dependency, a ‘-’
variance indicates a contravariant dependency, and a missing variance indication
indicates an invariant dependency.

A variance annotation constrains the way the annotated type variable may ap-
pear in the type or class which binds the type parameter. In a type definition
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type t[tps] = S, or a type declaration type f[tps] >: L <: U type parameters
labeled ‘+’ must only appear in covariant position whereas type parameters labeled
‘~” must only appear in contravariant position. Analogously, for a class definition
class c[tps](ps) extends f x: s =>..@, type parameters labeled ‘+’ must only
appear in covariant position in the self type s and the template ¢, whereas type pa-
rameters labeled ‘-’ must only appear in contravariant position.

The variance position of a type parameter in a type or template is defined as follows.
Let the opposite of covariance be contravariance, and the opposite of invariance be
itself. The top-level of the type or template is always in covariant position. The
variance position changes at the following constructs.

e The variance position of a method parameter is the opposite of the variance
position of the enclosing parameter clause.

» The variance position of a type parameter is the opposite of the variance po-
sition of the enclosing type parameter clause.

* The variance position of the lower bound of a type declaration or type param-
eter is the opposite of the variance position of the type declaration or param-
eter.

e The right hand side S of a type alias type f[tps] = S is always in invariant
position.

e The type of a mutable variable is always in invariant position.
* The prefix S of a type selection S#T is always in invariant position.

* For a type argument T of a type S[...T... ]: If the corresponding type pa-
rameter is invariant, then T is in invariant position. If the corresponding type
parameter is contravariant, the variance position of T is the opposite of the
variance position of the enclosing type S[...T... 1.

References to the type parameters in object-private values, variables, or methods
of the class are not checked for their variance position. In these members the type
parameter may appear anywhere without restricting its legal variance annotations.

Example 20.5.1 The following variance annotation is legal.

abstract class P[+A, +B] {
def fst: A; def snd: B
}

With this variance annotation, elements of type P subtype covariantly with respect
to their arguments. For instance,

P[IOException, String] <: P[Throwable, AnyRef]

If we make the elements of P mutable, the variance annotation becomes illegal.
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abstract class Q[+A, +B](x: A, y: B) {
var fst: A = x // #%%% error: illegal variance:
var snd: B =y // ‘A’, ‘B’ occur in invariant position.

}

If the mutable variables are object-private, the class definition becomes legal again:

abstract class R[+A, +B](x: A, y: B) {
private[this] var fst: A = x // OK
private[this] var snd: B =y // OK
}

Example 20.5.2 The following variance annotation is illegal, since a appears in
contravariant position in the parameter of append:

abstract class Vector[+A] {
def append(x: Vector[A]): Vector[A]
// ###% error: illegal variance:
// ‘A’ occurs in contravariant position.

The problem can be avoided by generalizing the type of append by means of a lower
bound:

abstract class Vector[+A] {
def append[B >: A](x: Vector[B]): Vector[B]
3

Example 20.5.3 Here is a case where a contravariant type parameter is useful.

abstract class OutputChannel[-A] {
def write(x: A): Unit
}

With that annotation, we have that OutputChannel[AnyRef] conforms to
OutputChannel[String]. That is, a channel on which one can write any object can
substitute for a channel on which one can write only strings.

20.6 Function Declarations and Definitions

Syntax:
Dcl = def FunDcl
FunDcl = FunSig ‘:’ Type
Def = def FunDef
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FunDef ::= FunSig [‘:’ Type] ‘=’ Expr
FunSig ::= 1id [FunTypeParamClause] ParamClauses
FunTypeParamClause ::= [’ TypeParam {‘,’ TypeParam} ‘]’
ParamClauses ::= {ParamClause} [[nl] ‘(’ implicit Params ‘)’]
ParamClause ::= [nl] “C’ [Params] ’)’}
Params = Param {‘,’ Param}
Param ::= {Annotation} id [‘:’ ParamType]
ParamType := Type

| “=>" Type

| Type ‘x’

A function declaration has the form def fpsig: T, where f is the function’s
name, psig is its parameter signature and T is its result type. A function definition
def fpsig: T = e alsoincludes a function body e, i.e. an expression which defines
the function’s result. A parameter signature consists of an optional type parameter
clause [ tps], followed by zero or more value parameter clauses (ps;)...(ps,). Such
a declaration or definition introduces a value with a (possibly polymorphic) method
type whose parameter types and result type are as given.

The type of the function body must conform to the function’s declared result type,
if one is given. If the function definition is not recursive, the result type may be
omitted, in which case it is determined from the type of the function body.

A type parameter clause tps consists of one or more type declarations (§20.3), which
introduce type parameters, possibly with bounds. The scope of a type parameter
includes the whole signature, including any of the type parameter bounds as well as
the function body; if it is present.

A value parameter clause ps consists of zero or more formal parameter bindings
such as x: T, which bind value parameters and associate them with their types.
The scope of a formal value parameter name x is the function body; if one is given.
Both type parameter names and value parameter names must be pairwise distinct.

20.6.1 By-Name Parameters
Syntax:

ParamType 1= =7 Type
The type of a value parameter may be prefixed by =>, e.g. x: => T. The type of
such a parameter is then the parameterless method type => T. This indicates that
the corresponding argument is not evaluated at the point of function application,
but instead is evaluated at each use within the function. That is, the argument is
evaluated using call-by-name.

Example 20.6.1 The declaration

def whileLoop (cond: => Boolean) (stat: => unit): unit
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indicates that both parameters of whileLoop are evaluated using call-by-name.

20.6.2 Repeated Parameters

Syntax:

ParamType i:= Type ‘=’
The last value parameter of a parameter section may be suffixed by “+”, e.g.
(..., x:T=). The type of such a repeated parameter inside the method is then

the sequence type scala.Seq[T]. Methods with repeated parameters T take
a variable number of arguments of type T. That is, if a method m with type
(Ty,..., Ty, S*)U is applied to arguments (ey, ..., ex) where k = n, then m is taken
in that application to have type (T3, ..., Ty, S, ..., S)U, with k — n occurrences of
type S. The only exception to this rule is if the last argument is marked to be
a sequence argument via a _» type annotation. If m above is applied to argu-
ments (ey, ..., ey, € : _x), then the type of m in that application is taken to be
(T,..., T,, scala.Seq[S]).

Example 20.6.2 The following method definition computes the sum of a variable
number of integer arguments.

def sum(args: Intx) = {
var result = 0
for (arg <- args.elements) result += arg
result

}

The following applications of this method yield 0, 1, 6, in that order.

sum()
sum(1)
sum(1l, 2, 3)

Furthermore, assume the definition:

val xs = List(1, 2, 3)

The following applications method sum is ill-formed:

sum(xs) // ##xww% error: expected: int, found: List[int]

By contrast, the following application is well formed and yields again the result 6:

sum(xs: _*)
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20.6.3 Procedures

Syntax:
FunDcl = FunSig
FunDef = FunSig [nl] ‘{’ Block ‘}’

Special syntax exists for procedures, i.e. functions that return the unit value {}. A
procedure declaration is a function declaration where the result type is omitted.
The result type is then implicitly completed to the unit type. E.g., def f(ps) is
equivalent to def f(ps): unit.

A procedure definition is a function definition where the result type and the equals
sign are omitted; its defining expression must be ablock. E.g., def f(ps) {stats} is
equivalentto def f(ps): unit = {stats}.

Example 20.6.3 Here is a declaration and a definition of a procedure named write:

trait Writer {
def write(str: String)

}

object Terminal extends Writer {
def write(str: String) { System.out.println(str) }
}

The code above is implicitly completed to the following code:

trait Writer {
def write(str: String): Unit
}
object Terminal extends Writer {
def write(str: String): Unit = { System.out.println(str) }
3

20.6.4 Method Return Type Inference

A class member definition m that overrides some other function m' in a base class
of C may leave out the return type, even if it is recursive. In this case, the return type
R’ of the overridden function m’, seen as a member of C, is taken as the return type
of m for each recursive invocation of m. That way, a type R for the right-hand side
of m can be determined, which is then taken as the return type of m. Note that R
may be different from R’, as long as R conforms to R’.

Example 20.6.4 Assume the following definitions:

trait I {
def factorial(x: Int): Int
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}
class C extends I {

def factorial(x: Int) = if (x == 0) 1 else x * factorial(x - 1)
}

Here, it is OK to leave out the result type of factorial in C, even though the method
is recursive.

20.7 Import Clauses

Syntax:
Import ::= import ImportExpr {‘,’ ImportExpr}
ImportExpr ::= StableId ‘.’ (id | ‘_’ | ImportSelectors)
ImportSelectors ::= ‘{’ {ImportSelector ‘,’}
(ImportSelector | ‘_") *‘}’
ImportSelector ::=id [‘=’ id | ‘=" ‘_’]

An import clause has the form import p.I where p is a stable identifier (§19.1)
and I is an import expression. The import expression determines a set of names
of members of p which are made available without qualification. The most general
form of an import expression is a list of import selectors

{ X1 => Y1y Xn => Yn, — } .

for n = 0, where the final wildcard ‘_’ may be absent. It makes available each mem-
ber p.x; under the unqualified name y;. l.e. every import selector x; => y; re-
names p.x; to y;. If a final wildcard is present, all members z of p other than
X1, ..., X, are also made available under their own unqualified names.

Import selectors work in the same way for type and term members. For instance, an
import clause import p.{x => y} renames the term name p.x to the term name
y and the type name p. x to the type name y. At least one of these two names must
reference a member of p.

If the target in an import selector is a wildcard, the import selector hides access to
the source member. For instance, the import selector x => _ “renames” x to the
wildcard symbol (which is unaccessible as a name in user programs), and thereby
effectively prevents unqualified access to x. This is useful if there is a final wild-
card in the same import selector list, which imports all members not mentioned in

previous import selectors.

The scope of a binding introduced by an import-clause starts immediately after the
import clause and extends to the end of the enclosing block, template, package
clause, or compilation unit, whichever comes first.

Several shorthands exist. An import selector may be just a simple name x. In
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this case, x is imported without renaming, so the import selector is equivalent to
x => x. Furthermore, it is possible to replace the whole import selector list by
a single identifier or wildcard. The import clause import p.x is equivalent to
import p.{x},i.e.it makes available without qualification the member x of p. The
import clause import p._ is equivalent to import p.{_}, i.e. it makes available
without qualification all members of p (this is analogous to import p.* inJava).

An import clause with multiple import expressions import p;.I,..., pn.I, isin-
terpreted as a sequence of import clauses import p;.I[;; ...; import py.I,.

Example 20.7.1 Consider the object definition:

object M {

def z =0, one =1

def add(x: Int, y: Int): Int = x + vy
}

Then the block

{ import M.{one, z => zero, _}; add(zero, one) }

is equivalent to the block

{ M.add(M.z, M.one) } .



Chapter 21
Classes and Objects

Syntax:

TmplDef ::= [case] class ClassDef
| [case] object ObjectDef
| trait TraitDef

Classes (§21.3) and objects (§21.4) are both defined in terms of templates.

21.1 Templates

Syntax:
ClassTemplate ::= [EarlyDefs] ClassParents [TemplateBody]
TraitTemplate ::= [EarlyDefs] TraitParents [TemplateBody]
ClassParents ::= Constr {with AnnotType}
TraitParents ::= AnnotType {with AnnotType}
TemplateBody t:= [nl] “{’ [id [‘:’ Type] ‘=>’]

TemplateStat {semi TemplateStat} ‘}’

A template defines the type signature, behavior and initial state of a trait
or class of objects or of a single object. Templates form part of instance
creation expressions, class definitions, and object definitions. A template
sc with mt; with ... with mt, {stats} consists of a constructor invocation sc
which defines the template’s superclass, trait references mt, ..., mt, (n=0), which
define the template’s traits, and a statement sequence stats which contains initial-
ization code and additional member definitions for the template.

Each trait reference m¢; must denote a trait (§21.3.3). By contrast, the superclass
constructor sc normally refers to a class which is not a trait. It is possible to write
a list of parents that starts with a trait reference, e.g. mt#; with ... with m¢,. In
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that case the list of parents is implicitly extended to include the supertype of m#
as first parent type. The new supertype must have at least one constructor that
does not take parameters. In the following, we will always assume that this implicit
extension has been performed, so that the first parent class of a template is a regular
superclass constructor, not a trait reference.

The list of parents of every class is also always implicitly extended by a reference to
the scala.ScalaObject trait as last mixin. E.g.

sc¢ with mit; with ... with mi¢, {stats}

becomes

mt; with ... with mt, {stats} with ScalaObject {stats} .

The list of parents of a template must be well-formed. This means that the class
denoted by the superclass constructor sc must be a subclass of the superclasses
of all the traits mt, ..., mt,. In other words, the non-trait classes inherited by a
template form a chain in the inheritance hierarchy which starts with the template’s
superclass.

The least proper supertype of a template is the class type or compound type (§19.2.7)
consisting of all its parent class types.

The statement sequence stats contains member definitions that define new mem-
bers or overwrite members in the parent classes. If the template forms part of a
class definition, the statement part stats may also contain declarations of abstract
members. Furthermore, stats may contain expressions that are executed in the or-
der they are given as part of the initialization of a template.

The sequence of template statements may be prefixed with a formal parameter def-
inition and an arrow, e.g. x =>, or x:T =>. If a formal parameter is given, it can be
used as an alias for the reference this throughout the body of the template. If the
formal parameter comes with a type T, this type is assumed to be the self type of the
underlying class. Inside the template, the type of this is assumed to be s. The self
type must conform to the self types of all classes which are inherited by the template
t. The self type clause x: s => may be omitted, in which case the self type of the
template is assumed to be equal to the class or trait or object defining the template.

Example 21.1.1 Consider the following class definitions:

class Base extends Object {}
trait Mixin extends Base {}
object 0 extends Mixin {}

In this case, the definition of 0 is expanded to:

object 0 extends Base with Mixin {}
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Inheriting from Java Types. A template may have a Java class as its superclass and
Java interfaces as its mixins.

Template Evaluation. Consider a template sc with mit; with mt, {stats}.

If this is the template of a trait (§21.3.3) then its mixin-evaluation consists of an
evaluation of the statement sequence stats.

If this is not a template of a trait, then its evaluation consists of the following steps.

e First, the superclass constructor sc is evaluated (§21.1.1).

* Then, all base classes in the template’s linearization (§21.1.2) up to the tem-
plate’s superclass denoted by sc are mixin-evaluated. Mixin-evaluation hap-
pens in reverse order of occurrence in the linearization, i.e. the class immedi-
ately preceding sc is evaluated first.

* Finally the statement sequence stats is evaluated.

21.1.1 Constructor Invocations
Syntax:

Constr ::= AnnotType {‘(’ [Exprs [‘,’]] )’}

Constructor invocations define the type, members, and initial state of objects cre-
ated by an instance creation expression, or of parts of an object’s definition which
are inherited by a class or object definition. A constructor invocation is a function
application x.c[targs](args,)...(args,), where x is a stable identifier (§19.1), cisa
type name which either designates a class or defines an alias type for one, targsis a
type argument list, and args,, ..., args,, are argument lists, which match the param-
eters of one the constructors of that class.

The prefix ‘x.’ can be omitted. A type argument list can be given only if the class ¢
takes type parameters. Even then it can be omitted, in which case a type argument
list is synthesized using local type inference (§22.24.4). If no explicit arguments are
given, an empty list () is implicitly supplied.

An evaluation of a constructor invocation x.c[targs](args,)...(args,) consists of
the following steps:

e First, the prefix x is evaluated.
* Then, the arguments args,, ..., args,, are evaluated from left to right.

* Finally, the being constructed is initialized by evaluating the template of the
class referred to by c.
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21.1.2 Class Linearization

The classes reachable through transitive closure of the direct inheritance relation
from a class C are called the base classes of C. Because of mixins, the inheritance re-
lationship on base classes forms in general a directed acyclic graph. A linearization
of this graph is defined as follows.

Definition 21.1.2 Let C be a class with template C; with ... with C, { stats }.
The linearization of C, £ (C) is defined as follows:

L) = C,ZLCH+..¥ZL([C)

Here ¥ denotes concatenation where elements of the right operand replace identi-
cal elements of the left operand:

{a, A+ B a,(A¥B) ifag B

= A¥B ifae B

Example 21.1.3 Consider the following class definitions.

abstract class AbsIterator extends AnyRef { ... }

trait RichIterator extends AbsIterator { ... }

class Stringlterator extends AbsIterator { ... }

class Iter extends Stringlterator with RichIterator { ... }

Then the linearization of class Iter is
{ Iter, RichIterator, StringIterator, AbsIterator, ScalaObject, AnyRef, Any }

Trait ScalaObject appears in this list because it is added as last mixin to every Scala
class (§21.1).

Note that the linearization of a class refines the inheritance relation: if C is a sub-
class of D, then C precedes D in any linearization where both C and D occur. Defi-
nition 21.1.2 also satisfies the property that a linearization of a class always contains
the linearization of its direct superclass as a suffix. For instance, the linearization of
StringIterator is

{ StringIterator, AbsIterator, ScalaObject, AnyRef, Any }

which is a suffix of the linearization of its subclass Iter. The same is not true for the
linearization of mixins. For instance, the linearization of RichIterator is

{ RichIterator, AbsIterator, ScalaObject, AnyRef, Any }

which is not a suffix of the linearization of Iter.
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21.1.3 Class Members

A class C defined by a template C; with ... with C, { stats } can define mem-
bers in its statement sequence stats and can inherit members from all parent
classes. Scala adopts Java and C#’s conventions for static overloading of methods. It
is thus possible that a class defines and/or inherits several methods with the same
name. To decide whether a defined member of a class C overrides a member of a
parent class, or whether the two co-exist as overloaded variants in C, Scala uses the
following definition of matching on members:

Definition 21.1.4 A member definition M matches a member definition M’, if M
and M’ bind the same name, and one of following holds.

1. Neither M nor M’ is a method definition.
2. M and M’ define both monomorphic methods with equal argument types.

3. M defines a parameterless method and M’ defines a method with an empty
parameter list () or vice versa.

4. M and M’ define both polymorphic methods with equal number of argument
types T, T and equal numbers of type parameters 7, 7, say, and T = [7 /7] T.

Member definitions fall into two categories: concrete and abstract. Members of
class C are either directly defined (i.e. they appear in C’s statement sequence stats)
or they are inherited. There are two rules that determine the set of members of a
class, one for each category:

Definition 21.1.5 A concrete member of a class C is any concrete definition M in
some class C; € Z(C), except if there is a preceding class C; € £ (C) where j < i
which directly defines a concrete member M’ matching M.

An abstract member of a class C is any abstract definition M in some class C; € £ (C),
except if C contains already a concrete member M’ matching M, or if there is a
preceding class C; € £(C) where j < i which directly defines an abstract member
M’ matching M.

This definition also determines the overriding relationships between matching
members of a class C and its parents (§21.1.4). First, a concrete definition always
overrides an abstract definition. Second, for definitions M and M’ which are both
concrete or both abstract, M overrides M’ if M appears in a class that precedes (in
the linearization of C) the class in which M’ is defined.

Itis an error if a template directly defines two matching members. It is also an error
if a template contains two members (directly defined or inherited) with the same
name and the same erased type (§19.6).
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Example 21.1.6 Consider the trait definitions:

trait A { def f: Int =1 ; def g: Int = 2 ; def h: Int = 3 }
trait B { def f: Int = 4 ; def g: Int }
trait C extends A with B { def h: Int }

Then trait C has a directly defined abstract member h. It inherits member f from
trait Band member g from trait A.

21.1.4 Overriding

A member M of class C that matches (§21.1.3) a non-private member M’ of a base
class of C is said to override that member. In this case the binding of the overrid-
ing member M must subsume (§19.5.2) the binding of the overridden member M’.
Furthermore, the following restrictions on modifiers apply to M and M’:

e M’ must not be labeled final.
e M must not be private (§21.2).

e If M is labeled private[C] for some enclosing class or package C, then M’
must be labeled private[C’] for some class or package C’ where C’ equals C
or C' is contained in C.

e If M is labeled protected, then M’ must also be labeled protected.
e If M’ is not an abstract member, then M must be labeled override.

 If M’ is incomplete (§21.2) in C then M must be labeled abstract override.

A special rule concerns parameterless methods. If a paramterless method defined
asdef f: T = ...ordef f = ... overrides a method of type ()T’ which has an
empty parameter list, then f is also assumed to have an empty parameter list.

Example 21.1.7 Consider the definitions:

trait Root { type T <: Root }

trait A extends Root { type T <: A }
trait B extends Root { type T <: B }
trait C extends A with B

Then the class definition C is not well-formed because the binding of T in C is
type T <: B, which fails to subsume the binding type T <: A of T in type A. The
problem can be solved by adding an overriding definition of type T in class C:

class C extends A with B { type T <: C }
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21.1.5 Inheritance Closure

Let C be a class type. The inheritance closure of C is the smallest set.# of types such
that

e If Tisin.#, then every type T’ which forms syntactically a part of T is also in
.

» If T is aclass type in .#, then all parents (§21.1) of T are also in .%.

Itis a static error if the inheritance closure of a class type consists of an infinite num-
ber of types. (This restriction is necessary to make subtyping decidable [KP07]).

21.1.6 Early Definitions

Syntax:
EarlyDefs = ‘{’ [EarlyDef {semi EarlyDef}] ‘}’ with
EarlyDef = Annotations Modifiers PatDef

A template may start with an early field definition clause, which serves to define
certain field values before the supertype constructor is called. In a template

{ val pi1: T1 = €

val p,: T, = e,
} with sc with mi# with mt, {stats}

The initial pattern definitions of py, ..., p, are called early definitions. They define
fields which form part of the template. Every early definition must define at least
one variable.

An early definition is type-checked and evaluated in the scope which is in effect
just before the template being defined, augmented by any type parameters of the
enclosing class and by any early definitions preceding the one being defined. In
particular, any reference to this in the right-hand side of an early definition refers
to the identity of this just outside the template. Consequently, it is impossible that
an early definition refers to the object being constructed by the template, or refers
to one of its fields and methods, except for any other preceding early definition in
the same section.

Early definitions are evaluated in the order they are being defined before the super-
class constructor of the template is called.

Example 21.1.8 Early definitions are particularly useful for traits, which do not
have normal constructor parameters. Example:

trait Greeting {
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val name: String
val msg = "How are you, "+name

}

class C extends {
val name = "Bob"

} with Greeting {
println(msg)

}

In the code above, the field name is initialized before the constructor of Greeting
is called. Therefore, field msg in class Greeting is properly initialized to
"How are you, Bob".

If name has been initialized instead in C’s normal class body, it would be initial-
ized after the constructor of Greeting. In that case, msg would be initialized to
"How are you, <null>".

21.2 Modifiers

Syntax:
Modifier ::= LocalModifier
| AcessModifier
| override
LocalModifier = abstract
| final
| sealed
| implicit
AccessModifier = (private | protected) [AccessQualifier]
AccessQualifier = ‘[’ (id | this) ‘]’

Member definitions may be preceded by modifiers which affect the accessibility
and usage of the identifiers bound by them. If several modifiers are given, their
order does not matter, but the same modifier may not occur repeatedly. Modifiers
preceding a repeated definition apply to all constituent definitions. The rules gov-
erning the validity and meaning of a modifier are as follows.

* The private modifier can be used with any definition or declaration in a tem-
plate. Such members can be accessed only from within the directly enclosing
template and its companion module or companion class (SExample 21.4.1).
They are not inherited by subclasses and they may not override definitions in
parent classes.

The modifier can be qualifiedwith an identifier C (e.g. private[C]) that must
denote a class or package enclosing the definition. Members labeled with
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such a modifier are accessible respectively only from code inside the pack-
age C or only from code inside the class C and its companion module (§21.4).
Such members are also inherited only from templates inside C.

An different form of qualification is private[this]. A member M marked
with this modifier can be accessed only from within the object in which it is
defined. That is, a selection p.M is only legal if the prefix is this or O. this,
for some class O enclosing the reference. In addition, the restrictions for un-
qualified private apply.

Members marked private without a qualifier are called class-private, whereas
members labeled with private[this] are called object-private. A member
is private if it is either class-private or object-private, but not if it is marked
private[C] where C is an identifier; in the latter case the member is called
qualified private.

Class-private or object-private members may not be deferred, and may not
have protected, final or override modfiers.

* The protected modifier applies to class member definitions. Protected mem-
bers of a class can be accessed from within

- the template of the defining class,
- all templates that have the defining class as a base class,

- the companion module of any of those classes.

A protected modifier can be qualified with an package identifier C (e.g.
protected[ C]) that must denote a class or package enclosing the definition.
Members labeled with such a modifier are also accessible respectively from
all code inside the package C or from all code inside the class C and its com-
panion module (§21.4).

A protected identifier x may be used as a member name in a selection r.x
only if one of the following applies:

- The access is within the template defining the member, or, if a qualifi-
cation C is given, inside the package C, or the class C, or its companion
module, or

— r is one of the reserved words this and super, or

- 1’s type conforms to a type-instance of the class which contains the ac-
cess.

A different form of qualification is protected[this]. A member M marked
with this modifier can be accessed only from within the object in which it is
defined. That is, a selection p.M is only legal if the prefix is this or O. this,
for some class O enclosing the reference. In addition, the restrictions for un-
qualified protected apply.
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* The override modifier applies to class member definitions or declarations. It

is mandatory for member definitions or declarations that override some other
concrete member definition in a parent class. If an override modifier is given,
there must be at least one overridden member definition or declaration (ei-
ther concrete or abstract).

The override modifier has a different significance when combined with the
abstract modifier. That modifier combination is only allowed for value mem-
bers of traits. A member labeled abstract override must override at least
one other member and all members overridden by it must be incomplete.

We call a member M of a template incomplete if it is either abstract (i.e. de-
fined by a declaration), oritis labeled abstract and override and every mem-
ber overridden by M is again incomplete.

Note that the abstract override modifier combination does not influence
the concept whether a member is concrete or abstract. A member is abstract
if only a declaration is given for it; it is concreteif a full definition is given.

The abstract modifier is used in class definitions. It is redundant for traits,
and mandatory for all other classes which have incomplete members. Ab-
stract classes cannot be instantiated (§22.9) with a constructor invocation un-
less followed by mixins and/or a refinement which override all incomplete
members of the class. A case class (§21.3.2) cannot be abstract.

The abstract modifier can also be used in conjunction with override for
class member definitions. In that case the previous discussion applies.

The final modifier applies to class member definitions and to class defini-
tions. A final class member definition may not be overridden in subclasses.
A final class may not be inherited by a template. final is redundant for ob-
ject definitions. Members of final classes or objects are implicitly also final, so
the final modifier is redundant for them, too. final may not be applied to
incomplete members, and it may not be combined in one modifier list with
private or sealed.

The sealed modifier applies to class definitions. A sealed class may not be
directly inherited, except if the inheriting template is defined the same source
file as the inherited class. However, subclasses of a sealed class can inherited
anywhere.

Example 21.2.1 The following code illustrates the use of qualified private:

package outerpkg.innerpkg
class Outer {

class Inner {

private[Outer] def f()
private[innerpkg] def g()
private[outerpkg] def h()
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Here, accesses to the method f can appear anywhere within OuterClass, but
not outside it. Accesses to method g can appear anywhere within the package
outerpkg.innerpkg, as would be the case for package-private methods in Java. Fi-
nally, accesses to method h can appear anywhere within package outerpkg, includ-
ing packages contained in it.

Example 21.2.2 A useful idiom to prevent clients of a class from constructing new
instances of that class is to declare the class abstract and sealed:

object m {
abstract sealed class C (x: Int) {
def nextC = new C(x + 1) {}
}
val empty = new C(0) {}
}

For instance, in the code above clients can create instances of class m. C only by call-
ing the nextC method of an existing m. C object; it is not possible for clients to create
objects of class m. C directly. Indeed the following two lines are both in error:

ot

new m.C(0) // ##%% error: C is abstract, so it cannot be instantiated.
new m.C(0) {} // ##%% error: illegal inheritance from sealed class.

A similar access restriction can be achieved by marking the primary constructor
private (see Example 21.3.2).

21.3 Class Definitions

Syntax:
TmplDef ::= class ClassDef
ClassDef ::= id [TypeParamClause] {Annotation}
[AccessModifier] ClassParamClauses ClassTemplateOpt
ClassParamClauses ::= {ClassParamClause}
[[n1] “C’ implicit ClassParams ‘)’]
ClassParamClause ::= [nl] “(’ [ClassParams ')’}
ClassParams ::= ClassParam {‘’ ClassParam}
ClassParam ::= {Annotation} [{Modifier} (‘val’ | ‘var’)]
id [“:’ ParamType]
ClassTemplateOpt ::= extends ClassTemplate | [[extends] TemplateBody]

The most general form of class definition is
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class c[tps] as m(ps;)...(ps,) extends ¢ (n=0).

Here,

¢ is the name of the class to be defined.

tps is a non-empty list of type parameters of the class being defined. The
scope of a type parameter is the whole class definition including the type pa-
rameter section itself. It is illegal to define two type parameters with the same
name. The type parameter section [tps] may be omitted. A class with a type
parameter section is called polymorphic, otherwise it is called monomorphic.

as is a possibly empty sequence of annotations (§27). If any annotations are
given, they apply to the primary constructor of the class.

m is an access modifier (§21.2) such as private or protected, possibly with
a qualification. If such an access modifier is given it applies to the primary
constructor to the class.

(psy) ... (ps,) are formal value parameter clauses for the primary constructor
of the class. The scope of a formal value parameter includes the template .
However, a formal value parameter may not form part of the types of any of
the parent classes or members of the class template ¢. Itisillegal to define two
formal value parameters with the same name. If no formal parameter sections
are given, an empty parameter section () is assumed.

If a formal parameter declaration x : T is preceded by a val or var keyword,
an accessor (getter) definition (§20.2) for this parameter is implicitly added to
the class. The getter introduces a value member x of class c that is defined as
an alias of the parameter. If the introducing keyword is var, a setter accessor
x_= (§20.2) is also implicitly added to the class. In invocation of that setter
x_=(e) changes the value of the parameter to the result of evaluating e. The
formal parameter declaration may contain modifiers, which then carry over
to the accessor definition(s). A formal parameter prefixed by val or var may
not at the same time be a call-by-name parameter (§20.6.1).

t is a template (§21.1) of the form

sc with mit; with ... with mt,, { stats } (m=0)

which defines the base classes, behavior and initial state of objects of the
class. The extends clause extends sc with mt#; with ... with mf,, canbe
omitted, in which case extends scala.AnyRef is assumed. The class body
{stats} may also be omitted, in which case the empty body {} is assumed.

This class definition defines a type c[ tps] and a constructor which when applied to
parameters conforming to types ps initializes instances of type c[ tps] by evaluating
the template ¢.
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Example 21.3.1 The following example illustrates val and var parameters of a class
(05

class C(x: Int, val y: String, var z: List[String])
val ¢ = new C(1, "abc", List())
c.Z = C.y :: C.Z

Example 21.3.2 The following class can be created only from its companion mod-
ule.

object Sensitive {
def makeSensitive(credentials: Certificate): Sensitive =
if (credentials == Admin) new Sensitive()
else throw new SecurityViolationException
}

class Sensitive private () {

21.3.1 Constructor Definitions

Syntax:
FunDef = this ParamClause ParamClauses
(‘=" ConstrExpr | [nl] ConstrBlock)
ConstrExpr = SelfInvocation
| ConstrBlock
ConstrBlock = ‘{’ SelfInvocation {semi BlockStat} ‘}’
SelfInvocation ::= this ArgumentExprs {ArgumentExprs}

A class may have additional constructors besides the primary constructor. These
are defined by constructor definitions of the form def this(ps;)...(ps,) = e.
Such a definition introduces an additional constructor for the enclosing class, with
parameters as given in the formal parameter lists ps;, ..., ps,,, and whose evaluation
is defined by the constructor expression e. The scope of each formal parameter is
the constructor expression e. A constructor expression is either a self constructor
invocation this(args,)...(args,) or a block which begins with a self constructor in-
vocation. The self constructor invocation must construct a generic instance of the
class. Le. if the class in question has name C and type parameters [ tps], then a self
constructor invocation must generate an instance of C[tps]; it is not permitted to
instantiate formal type parameters.

The signature and the self constructor invocation of a constructor definition are
type-checked and evaluated in the scope which is in effect at the point of the en-
closing class definition, augmented by any type parameters of the enclosing class
and by any early definitions (§21.1.6) of the enclosing template. The rest of the con-
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structor expression is type-checked and evaluated as a function body in the current
class.

If there are auxiliary constructors of a class C, they form together with C’s primary
constructor (§21.3) an overloaded constructor definition. The usual rules for over-
loading resolution (§22.24.3) apply for constructor invocations of C, including for
the self constructor invocations in the constructor expressions themselves. How-
ever, unlike other methods, constructors are never inherited. To prevent infinite
cycles of constructor invocations, there is the restriction that every self constructor
invocation must refer to a constructor definition which precedes it (i.e. it must refer
to either a preceding auxiliary constructor or the primary constructor of the class).

Example 21.3.3 Consider the class definition

class LinkedList[A]() {
var head = _
var tail = null
def isEmpty = tail !'= null
def this(head: A) = { this(); this.head = head }
def this(head: A, tail: List[A]) = { this(head); this.tail = tail }

This defines a class LinkedList with three constructors. The second constructor
constructs an singleton list, while the third one constructs a list with a given head
and tail.

21.3.2 Case Classes
Syntax:

TmplDef ::= case class ClassDef

If a class definition is prefixed with case, the class is said to be a case class.

The formal parameters in the first parameter section of a case class are called ele-
ments; they treated specially. First, the value of such a parameter can be extracted
as a field of a constructor pattern. Second, a val prefix is implicitly added to such
a parameter, unless the parameter carries already a val or var modifier. Hence, an
accessor definition for the parameter is generated (§21.3).

A case class definition of c[tps1(ps;)...(ps,) with type parameters tps and value
parameters ps implicitly generates a function definition for a case class factory to-
gether with the class definition itself:

def c[tps](ps;)...(ps,): s = new c[tps](xsy)...(XS,)

(Here, s is the self type of class ¢ and each xs; denotes the parameters of ps;. If a type
parameter section is missing in the class, it is also missing in the factory definition).
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Every case class implicitly overrides some method definitions of class scala.AnyRef
(§28.1) unless a definition of the same method is already given in the case class itself
or a concrete definition of the same method is given in some base class of the case
class different from AnyRef. In particular:

Method equals: (Any)boolean is structural equality, where two instances
are equal if they both belong to the case class in question and they have equal
(with respect to equals) constructor arguments.

Method hashCode: ()int computes a hash-code depending on the data
structure in a way which maps equal (with respect to equals) values to equal
hash-codes.

Method toString: ()String returns a string representation which contains
the name of the class and its elements.

Example 21.3.4 Here is the definition of abstract syntax for lambda calculus:

class Expr

case class Var (x: String) extends Expr
case class Apply (f: Expr, e: Expr) extends Expr
case class Lambda(x: String, e: Expr) extends Expr

This defines a class Expr with case classes Var, Apply and Lambda. A call-by-value
evaluator for lambda expressions could then be written as follows.

type Env = String => Value
case class Value(e: Expr, env: Env)

def eval(e: Expr, env: Env): Value = e match {
case Var (x) =>
env(x)
case Apply(f, g) =
val Value(Lambda (x, el), envl) = eval(f, env)
val v = eval(g, env)
eval (el, (v => if (v == x) v else envl(y)))
case Lambda(_, _) =>
Value(e, env)

It is possible to define further case classes that extend type Expr in other parts of the
program, for instance

case class Number(x: Int) extends Expr
This form of extensibility can be excluded by declaring the base class Expr sealed;

in this case, all classes that directly extend Expr must be in the same source file as
Expr.
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21.3.3 Traits

Syntax:
TmplDef = trait TraitDef
TraitDef ::= 1id [TypeParamClause] TraitTemplateOpt
TraitTemplateOpt ::= extends TraitTemplate | [[extends] TemplateBody]

A trait is a class that is meant to be added to some other class as a mixin. Unlike
normal classes, traits cannot have constructor parameters. Furthermore, no con-
structor arguments are passed to its superclass. This is not necessary as traits are
initialized after the superclass is initialized.

Assume a trait D defines some aspect of an instance x of type C (i.e. D is a base class
of C). Then the actual supertype of D in x is the compound type consisting of all
the base classes in £ (C) that succeed D. The actual supertype gives the context for
resolving a super reference in a trait (§22.4). Note that the actual supertype depends
on the type to which the trait is added in a mixin composition; it is not statically
known at the time the trait is defined.

If D is not a trait, then its actual supertype is simply its least proper supertype (which
is statically known).

Example 21.3.5 The following trait defines the property of being comparable to ob-
jects of some type. It contains an abstract method < and default implementations
of the other comparison operators <=, >, and >=.

trait Comparable[T <: Comparable[T]] { self: T =>
def < (that: T): Boolean
def <=(that: T): Boolean = this < that || this == that
def > (that: T): Boolean = that < this
def >=(that: T): Boolean = that <= this
3

Example 21.3.6 Consider an abstract class Table that implements maps from a
type of keys A to a type of values B. The class has a method set to enter a new key /
value pair into the table, and a method get that returns an optional value matching
a given key. Finally, there is a method apply which is like get, except that it returns
a given default value if the table is undefined for the given key. This class is imple-
mented as follows.

abstract class Table[A, B](defaultValue: B) {
def get(key: A): Option[B]
def set(key: A, value: B)
def apply(key: A) = get(key) match {
case Some(value) => value
case None => defaultValue
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Here is a concrete implementation of the Table class.

class ListTable[A, B](defaultValue: B) extends Table[A, B](defaultValue) {
private var elems: List[(A, B)]
def get(key: A) = elems.find(._1.==(key)).map(._2)
def set(key: A, value: B) = { elems = (key, value) :: elems }

}

Here is a trait that prevents concurrent access to the get and set operations of its
parent class:

trait SynchronizedTable[A, B] extends Table[A, B] {
abstract override def get(key: A): B =
synchronized { super.get(key) }
abstract override def set((key: A, value: B) =
synchronized { super.set(key, value) }

Note that SynchronizedTable does not pass an argument to its superclass, Table,
even though Table is defined with a formal parameter. Note also that the super calls
in SynchronizedTable’s get and set methods statically refer to abstract methods in
class Table. Thisislegal, aslong as the calling method is labeled abstract override
(§21.2).

Finally, the following mixin composition creates a synchronized list table with
strings as keys and integers as values and with a default value 0:

object MyTable extends ListTable[String, int](0) with SynchronizedTable

The object MyTable inherits its get and set method from SynchronizedTable. The
super calls in these methods are re-bound to refer to the corresponding imple-
mentations in ListTable, which is the actual supertype of SynchronizedTable in
MyTable.

21.4 Object Definitions

Syntax:
ObjectDef ::= 1id ClassTemplate
An object definition defines a single object of a new class. Its most general form is

object m extends f. Here, m is the name of the object to be defined, and ¢ is a
template (§21.1) of the form
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sc with m#; with ... with mzt, { stats }

which defines the base classes, behavior and initial state of m. The extends
clause extends sc with mit; with ... with mt, can be omitted, in which case
extends scala.AnyRef is assumed. The class body {stats} may also be omitted,
in which case the empty body {} is assumed.

The object definition defines a single object (or: module) conforming to the tem-
plate ¢. It is roughly equivalent to the following three definitions, which together
define a class and create a single object of that class on demand:

final class m$cls extends ¢

private var m$instance = null

final def m = {
if (m$instance == null) mS$instance = new m$cls
m$instance

Here, the final modifiers are omitted if the definition occurs as part of a block. The
names m$cls and m$instance are inaccessible for user programs.

Note that the value defined by an object definition is instantiated lazily. The
new m$cls constructor is evaluated not at the point of the object definition, but is
instead evaluated the first time m is dereferenced during execution of the program
(which might be never at all). An attempt to dereference m again in the course of
evaluation of the constructor leads to a infinite loop or run-time error.

However, the expansion given above is not accurate for top-level objects. It cannot
be because variable and method definition cannot appear on the top-level. Instead,
top-level objects are translated to static fields.

Example 21.4.1 Classes in Scala do not have static members; however, an equiva-
lent effect can be achieved by an accompanying object definition E.g.

abstract class Point {
val x: Double
val y: Double
def isOrigin = (x == 0.0 && y == 0.0)
}
object Point {
val origin = new Point() { val x = 0.0; val vy = 0.0 }

}

This defines a class Point and an object Point which contains origin as a member.
Note that the double use of the name Point is legal, since the class definition defines
the name Point in the type name space, whereas the object definition defines a
name in the term namespace.
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This technique is applied by the Scala compiler when interpreting a Java class with
static members. Such a class C is conceptually seen as a pair of a Scala class that
contains all instance members of C and a Scala object that contains all static mem-
bers of C.

Generally, a companion module of a class is an object which has the same name as
the class and is defined in the same scope and compilation unit. Conversely, the
class is called the companion class of the module.






Chapter 22

Expressions

Syntax:

Expr

Exprl

PostfixExpr
InfixExpr

PrefixExpr
SimpleExpr

SimpleExprl

[(Bindings | Id) ‘=>’] Expr

Exprl

if ‘(" Expr ‘)’ {nl} Expr [[‘;’] else Expr]
while ‘(’ Expr ‘)’ {nl} Expr

try ‘{’ Block ‘}’ [catch ‘{’ CaseClauses ‘}’]
[finally Expr]

do Expr [semi] while ‘(’ Expr ’)’

for (‘(’ Enumerators ‘)’ | ‘{’ Enumerators ‘}’)
{nl} [yield] Expr

throw Expr
return [Expr]
[SimpleExpr *
SimpleExprl ArgumentExprs
PostfixExpr Ascription
PostfixExpr match ‘{’ CaseClauses ‘}’
InfixExpr [id [nl]]

PrefixExpr

InfixExpr id [nl] InfixExpr

[=" | “+7 | “~7 | “V"] SimpleExpr
new ClassTemplate

BlockExpr

SimpleExprl

Literal

Path

‘¢ [Exprs [*,’]1]1 )’

SimpleExpr ‘.’ id

SimpleExpr TypeArgs

SimpleExprl ArgumentExprs

XmlExpr

.’] id ‘=" Expr
‘=’ Expr
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BlockExpr = ‘{’ Case(Clauses ‘}’
| ‘“{’ Block ‘}’
Block = {BlockStat semi} [ResultExpr]
ResultExpr = Exprl
| (Bindings | Id ‘:’ CompoundType) ‘=>’ Block
Ascription = ‘:’ CompoundType
I

:’ Annotation {Annotation}

Expressions are composed of operators and operands. Expression forms are dis-
cussed subsequently in decreasing order of precedence.

The typing of expressions is often relative to some expected type (which might be
undefined). When we write “expression e is expected to conform to type T”, we
mean: (1) the expected type of e is T, and (2) the type of expression e must conform
toT.

22.1 Literals

Syntax:

SimpleExpr ::= Literal
Typing of literals is as described in (§17.3); their evaluation is immediate.
A different form of literals designate classes. These are written

classOf[C]

Here, classOf is a method defined in scala.Predef (§28.5) and C is a class type.
The value of such a class literal is the run-time representation of the class type C.

22.2 The Null Value

The null value is of type scala.Null, and is thus compatible with every reference
type. It denotes a reference value which refers to a special “null” object. This object
implements the methods in class scala.AnyRef as follows:

eq(x), ==(x), equals(x) return true iff their argument x is also the “null”
object.

e isInstanceOf[ T ] always returns false.

e asInstanceOf[T] returns the “null” object itself if T conforms to
scala.AnyRef, and throws a Nul1PointerException otherwise.

* toString() returns the string “null”.
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A reference to any other member of the “null” object causes a
NullPointerException to be thrown.

22.3 Designators

Syntax:

SimpleExpr ::= Path
| SimpleExpr ‘.’ id

A designator refers to a named term. It can be a simple name or a selection.

A simple name x refers to a value as specified in §18. If x is bound by a definition
or declaration in an enclosing class or object C, it is taken to be equivalent to the
selection C.this.x where C is taken to refer to the class containing x even if the type
name C is shadowed (§18) at the occurrence of x.

If r is a stable identifier (§19.1) of type T, the selection r.x refers statically to a term
member m of r that is identified in T by the name x.

For other expressions e, e.x is typed as ifitwas { val y = e; y.x },forsome fresh
name y. The typing rules for blocks implies that in that case x’s type may not refer
to any abstract type member of e.

The expected type of a designator’s prefix is always undefined. The type of a desig-
nator is the type T of the entity it refers to, with the following exception: The type of
a path (§19.1) p which occurs in a context where a singleton type is required is the
singleton type p.type.

The contexts where a singleton type is required are those that satisfy one of the fol-
lowing conditions:

1. The path p occurs as the prefix of a selection and it does not designate a con-
stant, or

2. The expected type ptis a singleton type, or

3. The expected type ptis an abstract type with a singleton type as lower bound,
and the type T of the entity referred to by p does not conform to pt, or

4. The path p designates a module.

The selection e.x is evaluated by first evaluating the qualifier expression e, which
yields an object r, say. The selection’s result is then the member of r that is ei-
ther defined by m or defined by a definition overriding m. If that member has a
type which conforms to scala.NotNull@, the member’s value must be initialized to
a value different from null@, otherwise a scala.UnitializedError@ is thrown.
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22.4 This and Super

Syntax:

SimpleExpr ::= [id ‘.’] this
| [id ’.’] super [ClassQualifier] ‘.’ id

The expression this can appear in the statement part of a template or compound
type. It stands for the object being defined by the innermost template or compound
type enclosing the reference. If this is a compound type, the type of this is that
compound type. If it is a template of an instance creation expression, the type of
this is the type of that template. If it is a template of a class or object definition
with simple name C, the type of this is the same as the type of C. this.

The expression C.this is legal in the statement part of an enclosing class or ob-
ject definition with simple name C. It stands for the object being defined by the
innermost such definition. If the expression’s expected type is a singleton type, or
C.this occurs as the prefix of a selection, its type is C. this. type, otherwise it is the
self type of class C.

A reference super.m refers statically to a member m in the least proper supertype
of the innermost template containing the reference. It evaluates to the member
m’ in the actual supertype of that template which is equal to m or which overrides
m. The statically referenced member m must be concrete, or the template contain-
ing the reference must have a member m’ which overrides m and which is labeled
abstract override.

A reference C.super.m refers statically to a member m in the least proper su-
pertype of the innermost enclosing class or object definition named C which en-
closes the reference. It evaluates to the member m' in the actual supertype of that
class or object which is equal to m or which overrides m. The statically referenced
member m must be concrete, or the innermost enclosing class or object defini-
tion named C must have a member m’ which overrides m and which is labeled
abstract override.

The super prefix may be followed by a class qualifier [C ], asin C.super[C]. x. This
is called a static super reference. In this case, the reference is to the member of x in
the parent class of C whose simple name is M. That member must be uniquely
defined and concrete.

Example 22.4.1 Consider the following class definitions

class Root { val x = "Root" }
class A extends Root { override val x = "A" ; val superA = super.x }
trait B extends Root { override val x = "B" ; val superB = super.x }
class C extends Root with B {

override val x = "C" ; val superC = super.x }

}
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class D extends A with B {
override val x = "D" ; val superD = super.x }

}

The linearization of class C is {C, B, Root} and the linearization of class D is
{D, B, A, Root}. Then we have:

(new A).superA == "Root",
(new C).superA == "Root", (new C).superB = "Root", (new C).superC = "B",
(new D).superA == "Root", (new D).superB = "A", (new D) .superD = "B",

Note that the superB function returns different results depending on whether B is
mixed in with class Root or A.

22.5 Function Applications

Syntax:
SimpleExpr = SimpleExprl ArgumentExprs
ArgumentExprs ::= ‘(' [Exprs [‘,’]] 7))’
|  “C’ [Exprs “,’] PostfixExpr “:’ ‘_’ ‘=’ ')’
| [nl] BlockExpr
Exprs = Expr {‘,’ Expr}
An application f(ey, ..., e;) applies the function f to the argument expressions

el, ..., ep. If f has a method type (T, ..., T,)U, the type of each argument expres-
sion e; must conform to the corresponding parameter type 7;. If f has some value
type, the application is taken to be equivalent to f.apply(ey, ..., e,), i.e. the appli-
cation of an apply method defined by f.

Evaluation of f(ey, ..., e,) usually entails evaluation of f and ey, ..., e, in that or-
der. Each argument expression is converted to the type of its corresponding formal
parameter. After that, the application is rewritten to the function’s right hand side,
with actual arguments substituted for formal parameters. The result of evaluating
the rewritten right-hand side is finally converted to the function’s declared result
type, if one is given.

A function application usually allocates a new frame on the program’s run-time
stack. However, if a local function or a final method calls itself as its last action,
the call is executed using the stack-frame of the caller.

The case of a formal parameter with a parameterless method type =>T is treated
specially. In this case, the corresponding actual argument expression is not eval-
uated before the application. Instead, every use of the formal parameter on the
right-hand side of the rewrite rule entails a re-evaluation of the actual argument
expression. In other words, the evaluation order for =>-parameters is call-by-name
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whereas the evaluation order for normal parameters is call-by-value.

The last argument in an application may be marked as a sequence argument, e.g.
e: _+. Such an argument must correspond to a repeated parameter (§20.6.2) of
type S+ and it must be the only argument matching this parameter (i.e. the number
of formal parameters and actual arguments must be the same). Furthermore, the
type of e must conform to scala.Seq[T], for some type T which conforms to S.
In this case, the argument list is transformed by replacing the sequence e with its
elements.

Example 22.5.1 Assume the following function which computes the sum of a vari-
able number of arguments:

def sum(xs: Intx) = (0 /: xs) ((x, V) = X + V)

Then
sum(1l, 2, 3, 4)
sum(List(1, 2, 3, 4): _*)
both yield 10 as result. On the other hand,

sum(List(1, 2, 3, 4))

would not typecheck.

22.6 Method Values

Syntax:

SimpleExpr ::= SimpleExprl ‘_

The expression e _ iswell-formed if eis of method type or if e is a call-by-name pa-
rameter. If e is a method with parameters, e _ represents e converted to a function
type by eta expansion (§22.24.5). If e is a parameterless method or call-by-name pa-
rameter of type=>T, e _ represents the function of type () => T, which evaluates
e when it is applied to the empty parameterlist ().

Example 22.6.1 The method values in the left column are each equivalent to the
anonymous functions (§22.22) on their right.

Math.sin _ X => Math.sin(x)
Array.range _ (x1, x2) => Array.range(x1l, x2)
List.map2 _ (x1, x2) => (x3) => List.map2(x1l, x2)(x3)

List.map2(xs, ys)_ x => List.map2(xs, ys)(x)
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Note that a space is necessary between a method name and the trailing underscore
because otherwise the underscore would be considered part of the name.

22.7 Type Applications

Syntax:

SimpleExpr ::= SimpleExpr TypeArgs

A type application e[Ty,..., T,] instantiates a polymorphic value e of type
[ay >: Ly <: Uy,...,a, >: L, <: U,1S with argument types Tj,..., T,,. Every
argument type T; must obey the corresponding bounds L; and U;. That is, for
each i = 1,..., n, we must have oL; <: T; <: oU;, where o is the substitution
la;:=Ti,..., a,:= Ty]. The type of the application is ¢ S.

If the function part e is of some value type, the type application is taken to be equiv-
alent to e.apply[Ti,..., T,], i.e. the application of an apply method defined by
e.

Type applications can be omitted if local type inference (§22.24.4) can infer best
type parameters for a polymorphic functions from the types of the actual function
arguments and the expected result type.

22.8 Tuples
Syntax:

SimpleExpr i= C [Exprs [“,’]11 )’
A tuple expression (ej,...,e,) is an alias for the class instance creation
scala.Tuplen(ey,..., e;), where n = 2. The expression may also be written with
a trailing comma, i.e. (ey, ..., e,,). Unary tuples can be expressed in this syntax

only by using a trailing comma, i.e. (e,). Finally, the empty tuple () is the unique
value of type scala.Unit.

22.9 Instance Creation Expressions
Syntax:
SimpleExpr ::= new Template

A simple instance creation expression is of the form new ¢ where c is a constructor
invocation (§21.1.1). Let T be the type of c. Then T must denote a (a type instance
of) a non-abstract subclass of scala.AnyRef which conforms to its self type (§21.1).
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The expression is evaluated by creating a fresh object of type T which is is initialized
by evaluating c. The type of the expression is T.

A general instance creation expression is of the form new ¢ for some template ¢
(§21.1). Such an expression is equivalent to the block

{ class a extends f; new a }

where a is a fresh name of an anonymous class.

22.10 Blocks
Syntax:
BlockExpr = ‘{’ Block ‘}’
Block = [{BlockStat semi} ResultExpr]
Ablock expression {s;; ...; Sp; e} isconstructed from a sequence of block state-
ments sy, ..., S, and a final expression e. The statement sequence may not contain

two definitions or declarations that bind the same name in the same namespace.
The final expression can be omitted, in which case the unit value {} is assumed.

The expected type of the final expression e is the expected type of the block. The
expected type of all preceding statements is undefined.

The type of ablock sy; ...; s,; e isusually the type of e. That type must be equiv-
alent to a type which does not refer to an entity defined locally in the block. If this
condition is violated, there are two other possibilities:

1. If a fully defined expected type is given, the type of the block is instead as-
sumed to be the expected type.

2. Otherwise, if the type of e is an anonymous class a introduced by the expan-
sion of an instance creation expression (§22.9), the type of the block is taken
to be the least class type or refinement type which is a proper supertype of the

type a.

It is a compile-time error if neither of the previous two clauses applies.

Evaluation of the block entails evaluation of its statement sequence, followed by an
evaluation of the final expression e, which defines the result of the block.

Example 22.10.1 Written in isolation, the block

{ class C extends B {...} ; new C }

is illegal, since its type refers to class C, which is defined locally in the block.

However, when used in a definition such as
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val x: B = { class C extends B {...} ; new C }

the block is well-formed, since the problematic type C can be replaced by the ex-
pected type B.

22.11 Prefix, Infix, and Postfix Operations

Syntax:
PostfixExpr = InfixExpr [id [nl]]
InfixExpr = PrefixExpr
| InfixExpr id [nl] InfixExpr
PrefixExpr = [“=7 | “47 | ‘17 | “~’] SimpleExpr

Expressions can be constructed from operands and operators.

22.11.1 Prefix Operations

A prefix operation op e consists of a prefix operator op, which must be one of the
identifiers ‘+, ‘=’, “!” or ‘~’. The expression op e is equivalent to the postfix method
application e.unary_op.

Prefix operators are different from normal function applications in that their
operand expression need not be atomic. For instance, the input sequence -sin(x)
is read as -(sin(x)), whereas the function application negate sin(x) would be
parsed as the application of the infix operator sin to the operands negate and (x).

22.11.2 Postfix Operations

An postfix operator can be an arbitrary identifier. The postfix operation e op is in-
terpreted as e.op.

22.11.3 Infix Operations

An infix operator can be an arbitrary identifier. Infix operators have precedence and
associativity defined as follows:

The precedence of an infix operator is determined by the operator’s first character.
Characters are listed below in increasing order of precedence, with characters on
the same line having the same precedence.

(all letters)
|
A
&
<>
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* / %
(all other special characters)

That is, operators starting with a letter have lowest precedence, followed by opera-
tors starting with ‘|, etc.

The associativity of an operator is determined by the operator’s last character. Op-
erators ending in a colon ‘:’ are right-associative. All other operators are left-
associative.

Precedence and associativity of operators determine the grouping of parts of an ex-
pression as follows.

* If there are several infix operations in an expression, then operators with
higher precedence bind more closely than operators with lower precedence.

* If there are consecutive infix operations ey op; e; op, ...op,, e, with operators
opy, ..., op,, of the same precedence, then all these operators must have the
same associativity. If all operators are left-associative, the sequence is inter-
preted as (...(ep op; e1) op,...) op,, e,. Otherwise, if all operators are right-
associative, the sequence is interpreted as ey op; (e; op, (...0p,, €5)...).

* Postfix operators always have lower precedence than infix operators. E.g.
e1 op; e2 op, is always equivalent to (e; op; e2) op,.

The right-hand operand of a left-associative operator may consist of several argu-
ments enclosed in parentheses, e.g. e op (e,...,e,). This expression is then inter-
preted as e.op(ey,..., e,).

A left-associative binary operation e; op ey is interpreted as e;.op(e,). If op is right-
associative, the same operation is interpreted as { val x=e;; e».op(x) }, where
x is a fresh name.

22.11.4 Assignment Operators

An assignment operator is an operator symbol (syntax category op in (§17.1)) that
ends in an equals sign “=". Assignment operators are treated specially in that they
can be expanded to assignments if no other interpretation is valid.

Let’s consider an assignment operator such as += in an infix operation [ += r,
where [, r are expressions. This operation can be re-interpreted as an operation
which corresponds to the assignment

IL=1+r

except that the operation’s left-hand-side [ is evaluated only once.
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The re-interpretation occurs if the following two conditions are fulfilled.

1. The left-hand-side / does not have a member named +=, and also cannot be
converted by an implicit conversion (§22.24) to a value with a member named
+=,

2. The assignment [ = [ + r is type-correct. In particular this implies that /
refers to a variable or object that can be assigned to, and that is convertible
to a value with a member named +.

22.12 Typed Expressions

Syntax:

Exprl ::= PostfixExpr ‘:’ CompoundType

The typed expression e: T has type T. The type of expression e is expected to con-
form to T. The result of the expression is the value of e converted to type T.

Example 22.12.1 Here are examples of well-typed and illegally typed expressions.

1: int // legal, of type int
1: long // legal, of type long
// 1: string /) wwwww 11legal

22.13 Annotated Expressions

Syntax:
Exprl ::= PostfixExpr ‘:’ Annotation {Annotation}
An annotated expression e: @a; ... @a, attaches annotations a, ..., a, to the ex-

pression e (§27).

22.14 Assignments

Syntax:

Exprl ::= [SimpleExpr ‘.’] id ‘=’ Expr
| SimpleExprl ArgumentExprs ‘=’ Expr

The interpretation of an assignment to a simple variable x = e depends on the
definition of x. If x denotes a mutable variable, then the assignment changes the
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current value of x to be the result of evaluating the expression e. The type of e is
expected to conform to the type of x. If x is a parameterless function defined in
some template, and the same template contains a setter function x_= as member,
then the assignment x = e is interpreted as the invocation x_=(e) of that setter
function. Analogously, an assignment f.x = e to a parameterless function x is
interpreted as the invocation f.x_=(e).

An assignment f(args) = e with a function application to the left of the “=’ oper-
ator is interpreted as f.update(args, e), i.e.the invocation of an update function
defined by f.

Example 22.14.1 Here is the usual imperative code for matrix multiplication.

def matmul (xss: Array[Array[double]], yss: Array[Array[double]]) = {
val zss: Array[Array[double]] = new Array(xss.length, yss.length)

var i = 0
while (i < xss.length) {
var j = 0
while (j < yss(0).length) {
var acc = 0.0
var k = 0

while (k < yss.length) {
acc = acc + xs(i)(k) = yss(k)(3)
k +=1
}
zss(i)(j) = acc
j+=1
}

i+=1

ZSS

}

Desugaring the array accesses and assignments yields the following expanded ver-
sion:

def matmul (xss: Array[Array[double]], yss: Array[Array[double]]) = {
val zss: Array[Array[double]] = new Array(xss.length, yss.length)
var i = 0
while (i < xss.length) {
var j = 0
while (j < yss(0).length) {
var acc = 0.0
var k = 0
while (k < yss.length) {
acc = acc + xss.apply(i).apply(k) = yss.apply(k).apply(j)
k += 1
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3
zss.apply(i) .update(j, acc)
j+=1
}
i+=1
}
ZSS

22.15 Conditional Expressions

Syntax:

Exprl i:= if ‘(’ Expr ‘)’ {nl} Expr [[semi] else Expr]

The conditional expression if (e;) e, else e3 choosesone of the values of e, and
e3, depending on the value of e;. The condition e; is expected to conform to type
boolean. The then-part e, and the else-part e3 are both expected to conform to the
expected type of the conditional expression. The type of the conditional expression
is the least upper bound of the types of e; and e,. A semicolon preceding the else
symbol of a conditional expression is ignored.

The conditional expression is evaluated by evaluating first e;. If this evaluates to
true, the result of evaluating e, is returned, otherwise the result of evaluating e; is
returned.

A short form of the conditional expression eliminates the else-part. The conditional
expression if (e;) ey is evaluated as if it was if (e;) e» else (). The type of
this expression is unit and the then-part e, is also expected to conform to type unit.

22.16 While Loop Expressions

Syntax:
Exprl ::= while ‘(’ Expr ’)’ {nl} Expr
The while loop expression while (e;) ey is typed and evaluated as if it was an

application of whileLoop (e;) (e2) where the hypothetical function whileLoop is
defined as follows.

def whileLoop(cond: => Boolean)(body: => Unit): Unit =
if (cond) { body ; whileLoop(cond)(body) } else {}
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22.17 Do Loop Expressions

Syntax:

Exprl ::= do Expr [semi] while ‘(’ Expr ’)’

The do loop expression do e; while (ey) is typed and evaluated as if it was the
expression (e; ; while (e») e;). A semicolon preceding the while symbol of a
do loop expression is ignored.

22.18 For-Comprehensions

Syntax:

Exprl = for ‘(’ Enumerators ‘)’ {nl} [yield] Expr
| for ‘{’ Enumerators ‘}’ {nl} [yield] Expr

Enumerators = Generator {semi Enumerator}

Enumerator = Generator
|  Guard
| wval Patternl ‘=’ Expr

Generator = Patternl ‘<-’ Expr [Guard]

Guard = ‘if’ PostfixExpr

A comprehension for (enums) yield e evaluates expression e for each binding
generated by the enumerators enums. An enumerator sequence always starts with
a generator; this can be followed by further generators, value definitions, or guards.
A generator p <- e produces bindings from an expression e which is matched in
some way against pattern p. A value definition val p = e binds the value name
p (or several names in a pattern p) to the result of evaluating the expression e. A
guard if e contains a boolean expression which restricts enumerated bindings.
The precise meaning of generators and guards is defined by translation to invoca-
tions of four methods: map, filter, flatMap, and foreach. These methods can be
implemented in different ways for different carrier types.

The translation scheme is as follows. In a first step, every generator p <- e, where
p is not irrefutable (§24.1) for the type of e is replaced by

p <- e.filter { case p => true; case _ => false }

Then, the following rules are applied repeatedly until all comprehensions have been
eliminated.

e A for-comprehension for (p <- e) yield ¢ is translated to
e.map { case p => ¢ }.

e A for-comprehension for (p <- e) ¢ is translated to
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e.foreach { case p => ¢ }.

A for-comprehension

for (p <- e; p' <- €' ..) yield ¢" ,

where ... is a (possibly empty) sequence of generators or guards, is translated
to

e.flatmap { case p => for (p' <- € ...) yield €' } .

A for-comprehension
for (p <-e; p' <-¢€..) € .

where ... is a (possibly empty) sequence of generators or guards, is translated
to

e.foreach { case p => for (p' <- ¢ ...) &' } .

A generator p <- e followed byaguard if g istranslated to a single genera-
tor p <- e.filter((xy,..., Xx;) => g) where xy, ..., x, are the free variables
of p.

A generator p <- e followed by a value definition val p’ = ¢’ is translated
to the following generator of pairs of values, where x and x are fresh names:

val (p, p) <-
for (x@p <- e) yield { val X¥'@p’' = ¢'; (x, x') }

Example 22.18.1 The following code produces all pairs of numbers between 1 and

n-—1

whose sums are prime.

for { i<~ 1untiln

j <- 1 until i
if isPrime(i+j)

} yield (1, J)

The for-comprehension is translated to:

1

until n)
.flatMap {
case i => (1 until i)
.filter { j => isPrime(i+j) }
.map { case j => (i, j) } }

Example 22.18.2 For comprehensions can be used to express vector and matrix al-
gorithms concisely. For instance, here is a function to compute the transpose of a
given matrix:
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def transpose[A](xss: Array[Array[A]]) {
for (i <- Array.range(0, xss(0).length)) yield
Array(for (xs <- xss) yield xs(i))

Here is a function to compute the scalar product of two vectors:

def scalprod(xs: Array[Double], ys: Array[Double]) {
var acc = 0.0
for ((x, y) <- xs zip ys) acc = acc + X * y
acc

Finally, here is a function to compute the product of two matrices. Compare with
the imperative version of Example 22.14.1.

def matmul (xss: Array[Array[double]], yss: Array[Array[double]]) = {
val ysst = transpose(yss)
for (xs <- xs) yield
for (yst <- ysst) yield
scalprod(xs, yst)

The code above makes use of the fact that map, flatmap, filter, and foreach are
defined for members of class scala.Array.

22.19 Return Expressions

Syntax:

Exprl ::= return [Expr]

Areturn expression return e mustoccur inside the body of some enclosing named
method or function. The innermost enclosing named method or function, f, must
have an explicitly declared result type, and the type of e must conform to it. The
return expression evaluates the expression e and returns its value as the result of f.
The evaluation of any statements or expressions following the return expression is
omitted. The type of a return expression is scala.Nothing.

If the return expression is itself part of a closure, it is possible that the enclosing
instance of f has already returned before the return expression is executed. In that
case, a scala.runtime.NonLocalReturnException is thrown.

22.20 Throw Expressions

Syntax:



22.21 Try Expressions 237

Exprl ::= throw Expr

A throw expression throw e evaluates the expression e. The type of this expression
must conform to Throwable. If e evaluates to an exception reference, evaluation
is aborted with the thrown exception. If e evaluates to null, evaluation is instead
aborted with a NullPointerException. If there is an active try expression (§22.21)
which handles the thrown exception, evaluation resumes with the handler; other-
wise the thread executing the throw is aborted. The type of a throw expression is
scala.Nothing.

22.21 Try Expressions

Syntax:

Exprl ::= try ‘{’ Block ‘}’ [catch ‘{’ CaseClauses ‘}’]
[finally Expr]

A try expression is of the form try { b } catch h where the handler # is a pattern
matching anonymous function (§24.5)

{ case p; => by ... case p, => b, } .

This expression is evaluated by evaluating the block b. If evaluation of b does not
cause an exception to be thrown, the result of b is returned. Otherwise the handler
h is applied to the thrown exception. If the handler contains a case matching the
thrown exception, the first such case is invoked. If the handler contains no case
matching the thrown exception, the exception is re-thrown.

Let pt be the expected type of the try expression. The block b is ex-
pected to conform to pt. The handler h is expected conform to type
scala.PartialFunction[scala.Throwable, pt]. The type of the try expression is
the least upper bound of the type of b and the result type of h.

A try expression try { b } finally e evaluates the block b. If evaluation of b
does not cause an exception to be thrown, the expression e is evaluated. If an excep-
tion is thrown during evaluation of e, the evaluation of the try expression is aborted
with the thrown exception. If no exception is thrown during evaluation of e, the
result of b is returned as the result of the try expression.

If an exception is thrown during evaluation of b, the finally block e is also evalu-
ated. If another exception e is thrown during evaluation of e, evaluation of the try
expression is aborted with the thrown exception. If no exception is thrown during
evaluation of e, the original exception thrown in b is re-thrown once evaluation of e
has completed. The block b is expected to conform to the expected type of the try
expression. The finally expression e is expected to conform to type unit.

A try expression try { b } catch e; finally e, is a shorthand for
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try { try { b } catch e; } finally e».

22.22 Anonymous Functions

Syntax:
Exprl ::= (Bindings | Id) ‘=>’ Expr
Resul tExpr ::= (Bindings | Id [‘:’ CompoundType]) ‘=>’ Block
Bindings ::= ‘(’ Binding {‘,’ Binding} ‘)’
Binding i:= did [“:’ Typel
The anonymous function (x;: Ti,...,x,: T,) => e maps parameters x; of types

T; to a result given by expression e. The scope of each formal parameter x; is e.
Formal parameters must have pairwise distinct names.

If the expected type of the anonymous function is of the form
scala.Functionn[Sy,...,S,, R1, the expected type of e is R and the type T;
of any of the parameters x; can be omitted, in which case T; = S; is assumed. If the
expected type of the anonymous function is some other type, all formal parameter
types must be explicitly given, and the expected type of e is undefined. The type
of the anonymous function is scala.Functionn[S,...,S,, T1, where T is the
type of e. T must be equivalent to a type which does not refer to any of the formal
parameters x;.

The anonymous function is evaluated as the instance creation expression
new scala.Functionn[Ti,..., T, T] {

def applyv(x1: T1,...,xp: Typ): T =€
}

In the case of a single untyped formal parameter, (x) => e can be abbreviated to
x => e. If an anonymous function (x: T) => e with a single typed parameter

appears as the result expression of a block, it can be abbreviatedto x: T => e.

Example 22.22.1 Examples of anonymous functions:

X = X // The identity function
f=¢g=x= f(g(x)) // Curried function composition
(x: Int,y: Int) => x + Yy // A summation function
() = { count += 1; count } // The function which takes an

// empty parameter 1list (),
// increments a non-local variable
// ‘count’ and returns the new value.
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Implicit Anonymous Functions
Syntax:

SimpleExprl ::=

An expression (of syntactic category Expr) may contain embedded underscore sym-
bols _ at places where identifiers are legal. Such an expression represents an anony-
mous function where subsequent occurrences of underscores denote successive
parameters.

Define an underscore section to be an expression of the form _: T where T is a type,
or else of the form _, provided the underscore does not appear as the expression
part of a type ascription _: T..

An expression e of syntactic category Expr binds an underscore section u, if the fol-
lowing two conditions hold: (1) e properly contains u, and (2) there is no other ex-
pression of syntactic category Expr which is properly contained in e and which itself
properly contains u.

If an expression e binds underscore sections uy, ..., Uy, in this order, it is equivalent
to the anonymous function (u}, ... u;) => €' where each ] results from u; by
replacing the underscore with a fresh identifier and e’ results from e by replacing
each underscore section u; by u.

Example 22.22.2 The implicit anonymous functions in the left column are each
equivalent to the anonymous functions on their right.

_+1 X =>XxX+1

_* _ (x1, x2) => x1 * x2

(_: Int) = 2 (x: Int) = (x: Int) = 2
if (L) x elsey z => if (z) x else y
_.map(£f) x => x.map(f)

_.map(_ + 1) X => x.map(y = vy + 1)

22.23 Statements

{Annotation} {Modifier} Def
{Annotation} {Modifier} Dcl

Syntax:

BlockStat = Import
| [implicit] Def
| {LocalModifier} TmplDef
| Exprl
I

TemplateStat ::= Import
I
|
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| Expr
I

Statements occur as parts of blocks and templates. A statement can be an import,
a definition or an expression, or it can be empty. Statements used in the template
of a class definition can also be declarations. An expression that is used as a state-
ment can have an arbitrary value type. An expression statement e is evaluated by
evaluating e and discarding the result of the evaluation.

Block statements may be definitions which bind local names in the block. The
only modifiers allowed in block-local definitions are modifiers abstract, final, or
sealed preceding a class or object definition.

Evaluation of a statement sequence entails evaluation of the statements in the order
they are written.

22.24 Implicit Conversions

Implicit conversions can be applied to expressions whose type does not match their
expected type, as well as to unapplied methods. The available implicit conversions
are given in the next two sub-sections.

We say, a type T is compatible to a type U if T conforms to U after applying eta-
expansion (§22.24.5) and view applications (§23.3).

22.24.1 Value Conversions

The following five implicit conversions can be applied to an expression e which has
some value type T and which is type-checked with some expected type pt.

Overloading Resolution. If an expression denotes several possible members of a
class, overloading resolution (§22.24.3) is applied to pick a unique member.

Type Instantiation. An expression e of polymorphic type
[a; >: Ly <: Uy,...,ay, >: Ly <: U,1T

which does not appear as the function part of a type application is converted to
a type instance of T by determining with local type inference (§22.24.4) instance
types T, ..., T,, for the type variables a,, ..., a, and implicitly embedding e in the
type application e[ Ty, ..., T,1 (§22.7).

Numeric Literal Narrowing. If the expected type is byte, short or char, and the
expression e is an integer literal fitting in the range of that type, it is converted to the
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same literal in that type.

Value Discarding. 1f e has some value type and the expected type is unit, e is con-
verted to the expected type by embedding itin the term { e; () }.

View Application. If none of the previous conversions applies, and the e’s type
does not conform to the expected type pt, it is attempted to convert e to the ex-
pected type with a view (§23.3).

22.24.2 Method Conversions

The following four implicit conversions can be applied to methods which are not
applied to some argument list.

Evaluation. A parameterless method m of type => T is always converted to type
T by evaluating the expression to which m is bound.

Implicit Application. 1f the method takes only implicit parameters, implicit argu-
ments are passed following the rules of §23.2.

Eta Expansion. Otherwise, if the method is not a constructor, and the expected
type pt is a function type (Ts) = T’ eta-expansion (§22.24.5) is performed on the
expression e.

Empty Application. Otherwise, if e has method type ()7, it is implicitly applied to
the empty argument list, yielding e().

22.24.3 Overloading Resolution

If an identifier or selection e references several members of a class, the context of
the reference is used to identify a unique member. The way this is done depends on
whether or not e is used as a function. Let «f be the set of members referenced by e.

Assume first that e appears as a function in an application, as in e(args). If there
is precisely one alternative in <« which is a (possibly polymorphic) method type
whose arity matches the number of arguments given, that alternative is chosen.

Otherwise, let Ts be the vector of types obtained by typing each argument with an
undefined expected type. One determines first the set of applicable alternatives. A
method type alternative is applicable if each type in Ts is compatible with the cor-
responding formal parameter type in the alternative, and, if the expected type is
defined, the method’s result type is compatible to it. A polymorphic method type is
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applicable if local type inference can determine type arguments so that the instan-
tiated method type is applicable.

Let & be the set of applicable alternatives. It is an error if 9 is empty. Otherwise,
one chooses the most specific alternative among the alternatives in 98, according to
the following definition of being “more specific”.

* Amethod type (Ts) U is more specific than some other type S if S is applicable
to arguments (ps) of types Ts.

* A polymorphic method type [a; >: L; <: Uy,...,a, >: L, <: U,]T is
more specific than some other type S if T is more specific than S under the
assumption that for i = 1, ..., n each a; is an abstract type name bounded
from below by L; and from above by U;.

* Any other type is always more specific than a parameterized method type or
a polymorphic type.

It is an error if there is no unique alternative in 98 which is more specific than all
other alternatives in 28.

Assume next that e appears as a function in a type application, as in e[ targs]. Then
we choose all alternatives in « which take the same number of type parameters as
there are type arguments in targs. It is an error if no such alternative exists. If there
are several such alternatives overloading resolution is applied again to the whole
expression e[ targs].

Assume finally that e does not appear as a function in either an application or a type
application. If an expected type is given, let 28 be the set of those alternatives in </
which are compatible (§22.24) to it. Otherwise, let 28 be the same as /. We choose
in this case the most specific alternative among all alternatives in 98. It is an error if
there is no unique alternative in 28 which is more specific than all other alternatives
in 4.

In both cases, it is an error if the most specific alternative is defined in a class C, and
there is another applicable alternative which is defined in a true subclass of C.

Example 22.24.1 Consider the following definitions:

class A extends B {}
def f(x: B, y: B) = ...
def f(x: A, y: B)
val a: A

val b: B

Then the application f(b, b) refers to the first definition of f whereas the applica-
tion f(a, a) refers to the second. Assume now we add a third overloaded definition

def f(x: B, y: A) = ...
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Then the application f(a, a) is rejected for being ambiguous, since no most spe-
cific applicable signature exists.

22.24.4 Local Type Inference

Local type inference infers type arguments to be passed to expressions of polymor-
phic type. Say e is of type [a; >: L; <: Uy, ..., a, >: L, < U,]T and no explicit type
parameters are given.

Local type inference converts this expression to a type application e[T3,..., T,].
The choice of the type arguments T, ..., T, depends on the context in which the
expression appears and on the expected type pt. There are three cases.

Case 1: Selections. If the expression appears as the prefix of a selection with a
name Xx, then type inference is deferred to the whole expression e.x. That is, if e.x
has type S, it is now treated as having type [a; >: L <t Uy, ..., a, >: L, <: U,]S, and
local type inference is applied in turn to infer type arguments for ay, ..., a,, using
the context in which e.x appears.

Case 2: Values. If the expression e appears as a value without being applied to
value arguments, the type arguments are inferred by solving a constraint system
which relates the expression’s type T with the expected type pt. Without loss of
generality we can assume that 7T is a value type; if it is a method type we apply
eta-expansion (§22.24.5) to convert it to a function type. Solving means finding a
substitution o of types T; for the type parameters a; such that

* All type parameter bounds are respected, i.e. 0L; <: 0a; and oa; <: cU; for
i=1,...,n.

* The expression’s type conforms to the expected type, i.e. 0 T <: opt.

It is a compile time error if no such substitution exists. If several substitutions exist,
local-type inference will choose for each type variable a; a minimal or maximal type
T; of the solution space. A maximal type T; will be chosen if the type parameter a;
appears contravariantly (§20.5) in the type T of the expression. A minimal type T;
will be chosen in all other situations, i.e. if the variable appears covariantly, non-
variantly or not at all in the type T. We call such a substitution an optimal solution
of the given constraint system for the type T.

Case 3: Methods. The last case applies if the expression e appears in an applica-
tion e(dy, ..., d;;). In that case T is a method type (R, ..., R;,) T'. Without loss of
generality we can assume that the result type T’ is a value type; if it is a method type
we apply eta-expansion (§22.24.5) to convert it to a function type. One computes
first the types S; of the argument expressions d;, using two alternative schemes.
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Each argument expression d; is typed first with the expected type R;, in which the

type parameters ay, ..., a, are taken as type constants. If this fails, the argument d;
is typed instead with an expected type R}. which results from R; by replacing every
type parameter in a,, ..., a, with undefined.

In a second step, type arguments are inferred by solving a constraint system
which relates the method’s type with the expected type pt and the argument types
S1, ..., Sm. Solving the constraint system means finding a substitution o of types T;
for the type parameters a; such that

* All type parameter bounds are respected, i.e. 0L; <: 0a; and oa; <: cU; for
i=1,...,n.

e The method’s result type T’ conforms to the expected type, i.e. 0 T’ <: o pt.

e Each argument type conforms to the corresponding formal parameter type,
ie.oSj<:oRjforj=1,..., m.

It is a compile time error if no such substitution exists. If several solutions exist, an
optimal one for the type T is chosen.

All or parts of an expected type pt may be undefined. The rules for conformance
(§19.5.2) are extended to this case by adding the rule that for any type T the follow-
ing two statements are always true:

undefined<: T and T <: undefined.

Itis possible that no minimal or maximal solution for a type variable exists, in which
case a compile-time error results. Because <: is a pre-order, it is also possible that a
solution set has several optimal solutions for a type. In that case, a Scala compiler is
free to pick any one of them.

Example 22.24.2 Consider the two methods:

def cons[A](x: A, xs: List[A]): List[A] = x :: XS
def nil[B]: List[B] = Nil

and the definition

val xs = cons(1, nil) .

The application of cons is typed with an undefined expected type. This application
is completed by local type inference to cons[Int](1, nil). Here, one uses the
following reasoning to infer the type argument int for the type parameter a:

First, the argument expressions are typed. The first argument 1 has type int
whereas the second argument nil is itself polymorphic. One tries to type-check
nil with an expected type List[a]. This leads to the constraint system
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List[b?] <: List[a]

where we have labeled b? with a question mark to indicate that it is a variable in
the constraint system. Because class List is covariant, the optimal solution of this
constraint is

b = scala.Nothing .
In a second step, one solves the following constraint system for the type parameter
a of cons:

Int <: a?
List[scala.Nothing] <: List[a?]
List[a?] <: undefined

The optimal solution of this constraint system is

a = int ,

so int is the type inferred for a.

Example 22.24.3 Consider now the definition

val ys = cons("abc", xs)

where xs is defined of type List[int] as before. In this case local type inference
proceeds as follows.

First, the argument expressions are typed. The first argument "abc" has type
String. The second argument xs is first tried to be typed with expected type
List[a]. This fails, as List[int] is not a subtype of List[a]. Therefore, the sec-
ond strategy is tried; xs is now typed with expected type List[undefined]. This
succeeds and yields the argument type List[Int].

In a second step, one solves the following constraint system for the type parameter
a of cons:

String <: a?
List[int] <: List[a?]
List[a?] <: undefined

The optimal solution of this constraint system is

a = scala.Any ,

so scala.Any is the type inferred for a.
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22.24.5 Eta Expansion

Eta-expansion converts an expression of method type to an equivalent expression
of function type. It proceeds in two steps.

First, one identifes the maximal sub-expressions of e; let’s say these are e, ..., .
For each of these, one creates a fresh name x;. Let e’ be the expression resulting
from replacing every maximal subexpression e; in e by the corresponding fresh
name x;. Second, one creates a fresh name y; for every argument type 7; of the
method (i =1, ..., n). The result of eta-conversion is then:

{ val X1 = €1,

val x,, = en;
1Ty, 0 Ty) = e'(yl,---,yn)
}

If the expression e has a single call-by-name parameter (i.e. it is of type (=>T) U, for
some types T and U), eta-expansion of e yields a value of type ByNameFunction. The
latter is defined as follows.

trait ByNameFunction[-A, +B] extends AnyRef {
def apply(x: => A): B
override def toString() = "<function>"

}

Eta expansion is not applicable to methods where a call-by-name parameter ap-
pears together with other parameters in one parameter section. Neither is it appli-
cable to methods with repeated parameters x: T+ (§20.6.2).
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Implicit Parameters and Views

23.1 The Implicit Modifier

Syntax:
LocalModifier = implicit
ParamClauses = {ParamClause} [nl] ‘(’ implicit Params ‘)’

Template members and parameters labeled with an implicit modifier can be
passed to implicit parameters (§23.2) and can be used as implicit conversions called
views (§23.3). The implicit modifier is illegal for all type members, as well as for
top-level (§25.2) objects.

Example 23.1.1 The following code defines an abstract class of monoids and two
concrete implementations, StringMonoid and IntMonoid. The two implementa-
tions are marked implicit.

abstract class Monoid[A] extends SemiGroup[A] {
def unit: A
}
object Monoids {
implicit object StringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""
}
implicit object IntMonoid extends Monoid[Int] {
def add(x: Int, y: Int): Int = x +Vy
def unit: Int =0
}
}
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23.2 Implicit Parameters

An implicit parameter list (implicit p;,...,p,) marks the parameters p;, ..., pn
as implicit. A method or constructor can have only one implicit parameter list, and
it must be the last parameter list given.

A method with implicit parameters can be applied to arguments just like a normal
method. In this case the implicit label has no effect. However, if such a method
misses arguments for its implicit parameters, such arguments will be automatically
provided.

The actual arguments that are eligible to be passed to an implicit parameter of type
T fall into two categories. First, eligible are all identifiers x that can be accessed at
the point of the method call without a prefix and that denote an implicit definition
(§23.1) or an implicit parameter. An eligible identifier may thus be a local name, or
a member of an enclosing template, or it may be have been made accessible with-
out a prefix through an import clause (§20.7). Second, eligible are also all implicit
members of some object that belongs to the implicit scope of the implicit parame-
ter’s type, T.

The implicit scope of a type T consists of all companion modules (§21.4) of classes
that are associated with the implicit parameter’s type. Here, we say a class C is as-
sociated with a type T, if it is a base class (§21.1.2) of some part of T. The parts of a
type T are:

e if T is a compound type 7; with ... with T,, the union of the parts of
Ty, ..., Ty, as well as T itself,

e if T is a parameterized type S[Ti,..., T,1, the union of the parts of S and
Tl) ceey Tl’l)

e if T is a singleton type p.type, the parts of the type of p,
e if T is a type projection S#U, the parts of S as well as T itself,

in all other cases, just T itself.

If there are several eligible arguments which match the implicit parameter’s type,
a most specific one will be chosen using the rules of static overloading resolution
(§22.24.3).

Example 23.2.1 Assuming the classes from Example 23.1.1, here is a method which
computes the sum of a list of elements using the monoid’s add and unit operations.

def sum[A](xs: List)(implicit m: Monoid[A]): A =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail))

The monoid in question is marked as an implicit parameter, and can therefore be
inferred based on the type of the list. Consider for instance the call
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sum(List(1, 2, 3))

in a context where stringMonoid and intMonoid are visible. We know that the formal
type parameter a of sum needs to be instantiated to Int. The only eligible object
which matches the implicit formal parameter type Monoid[Int] is intMonoid so this
object will be passed as implicit parameter.

This discussion also shows that implicit parameters are inferred after any type ar-
guments are inferred (§22.24.4).

Implicit methods can themselves have implicit parameters. An example is the fol-
lowing method from module scala.List, which injects lists into the scala.Ordered
class, provided the element type of the list is also convertible to this type.

implicit def list2ordered[A](x: List[A])
(implicit elem2ordered: A => Ordered[A]): Ordered[List[A]] =

Assume in addition a method

implicit def int2ordered(x: Int): Ordered[Int]

that injects integers into the Ordered class. We can now define a sort method over
ordered lists:

sort(xs: List[a])(implicit a2ordered: a => Ordered[a]) = ...

We can apply sort to alist of lists of integers yss: List[List[int]] as follows:

sort(yss)

The call above will be completed by passing two nested implicit arguments:
sort(yss)(xs: List[int] => list2ordered[int](xs) (int2ordered)) .
The possibility of passing implicit arguments to implicit arguments raises the pos-

sibility of an infinite recursion. For instance, one might try to define the following
method, which injects every type into the Ordered class:

def magic[A](x: A)(implicit a2ordered: A => Ordered[A]): Ordered[A] =
a2ordered(x)

Now, if one tried to apply sort to an argument arg of a type that did not have an-
other injection into the Ordered class, one would obtain an infinite expansion:

sort(arg) (x => magic(x)(x => magic(x)(x => ... )))

To prevent such infinite expansions, we require that every implicit method defini-
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tion is contractive.

A method definition is contractive if the type of every implicit parameter type is
properly contained in the type that is obtained by removing all implicit parameters
from the method type and converting the rest to a function type.

A type T is contained in a type U if one of the following holds:

T is the same as some part of U,

U is a function type and T is not.

U and T are both function types, and the arity of U is greater than the arity of
T.

U and T both parameterized types (including function types) with the same
type constructor, and each type argument of T is contained in the corre-
sponding type argument of U.

A type T is properly contained in a type U if T is contained in U and different from
U.

Example 23.2.2 The type of 1ist2ordered is

(List[A]) (implicit A => Ordered[A]): Ordered[List[A]] .

This type is contractive, because the type of the implicit parameter,
A => Ordered[A], is properly contained in the function type of the method
without implicit parameters, List[A] => Ordered[List[A]].

The type of magic is

(A) (implicit A => Ordered[A]): Ordered[A] .

This type is not contractive, because the type of the implicit parameter,
A => Ordered[A], is the same as the function type of the method without implicit
parameters.

23.3 Views

Implicit parameters and methods can also define implicit conversions called views.
A view from type S to type T is defined by an implicit value which has function type
S=>T or (=>S)=>T or by a method convertible to a value of that type.

Views are applied in two situations.

1. If an expression e is of type T, and T does not conform to the expression’s
expected type pt. In this case an implicit v is searched which is applicable to
e and whose result type conforms to pt. The search proceeds as in the case of
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implicit parameters, where the implicit scope is the one of T => pt. If such a
view is found, the expression e is converted to v(e).

2. Inaselection e.m with e of type T, if the selector m does not denote a member
of T. In this case, a view v is searched which is applicable to e and whose result
contains a member named m. The search proceeds as in the case of implicit
parameters, where the implicit scope is the one of T. If such a view is found,
the selection e.m is converted to v(e) . m.

As for implicit parameters, overloading resolution is applied if there are several pos-
sible candidates.

Example 23.3.1 Class scala.Ordered[a] contains a method

def <= [B >: A](that: B)(implicit b2ordered: B => Ordered[B]): Boolean .

Assume two lists xs and ys of type List[int] and assume that the list2ordered
and int2ordered methods defined in §23.2 are in scope. Then the operation

XS <= VS

is legal, and is expanded to:

list2ordered(xs) (int2ordered) .<=

(vs)
(xs => list2ordered(xs) (int2ordered))

The first application of 1ist2ordered converts the list xs to an instance of class
Ordered, whereas the second occurrence is part of an implicit parameter passed
to the <= method.

23.4 View Bounds

Syntax:
TypeParam ::= id [>: Type] [<: Type] [<% Typel]
A type parameter a of a method or non-trait class may have a view bound a <% T.

In this case the type parameter may be instantiated to any type S which is convert-
ible by application of a view to the bound T.

A method or class containing such a type parameter is treated as being equivalent
to a method with a view parameter. E.g.

def f[A <% T1(ps): R = ...

is expanded to
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def f[A](ps)(implicit v: A= T): R = ...

where v is a fresh name for the implicit parameter. Since traits do not take con-
structor parameters, this translation does not work for them. Consequently, type-
parameters in traits may not be view-bounded.

Example 23.4.1 The <= method mentioned in Example 23.3.1 can be declared more
concisely as follows:

def <= [B >: A <% Ordered[B]](that: B): Boolean



Chapter 24
Pattern Matching

24.1 Patterns

Syntax:
Pattern ::= Patternl { ‘|’ Patternl }
Patternl = varid ‘:’ TypePat
| ‘.7 ‘“:’ TypePat
| Pattern2
Pattern2 = varid [‘@" Pattern3]
| Pattern3
Pattern3 = SimplePattern
| SimplePattern {id [nl] SimplePattern}
SimplePattern ::= ‘_’
| wvarid
| Literal
| Stableld
| StableId ‘(’ [Patterns [‘,’]1] )’
| StableId ‘(’ [Patterns ‘,’] ‘_" ‘=’ *)’
| “C [Patterns [‘,’]] )’
| XmlPattern
Patterns = Pattern {‘,’ Patterns}

A pattern is built from constants, constructors, variables and type tests. Pattern
matching tests whether a given value (or sequence of values) has the shape defined
by a pattern, and, if it does, binds the variables in the pattern to the corresponding
components of the value (or sequence of values). The same variable name may not
be bound more than once in a pattern.

Example 24.1.1 Some examples of patterns are:

1. The pattern ex: IOException matches all instances of class T0Exception,
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binding variable ex to the instance.

2. The pattern Some(x) matches values of the form Some(v), binding x to the
argument value v of the Some constructor.

3. The pattern (x, _) matches pairs of values, binding x to the first component
of the pair. The second component is matched with a wildcard pattern.

4. The pattern x :: y :: xs matches lists of length = 2, binding x to the list’s
first element, y to the list’s second element, and xs to the remainder.

5. The pattern 1 | 2 | 3 matches the integers between 1 and 3.

Pattern matching is always done in a context which supplies an expected type of the
pattern. We distinguish the following kinds of patterns.

24.1.1 Variable Patterns

Syntax:

SimplePattern ::=
| wvarid

A variable pattern x is a simple identifier which starts with a lower case letter. It
matches any value, and binds the variable name to that value. The type of x is the
expected type of the pattern as given from outside. A special case is the wild-card
pattern _ which is treated as if it was a fresh variable on each occurrence.

24.1.2 Typed Patterns
Syntax:

Patternl ::= varid ‘:’ TypePat
| ‘_7 ‘:’ TypePat

A typed pattern x : T consists of a pattern variable x and a type pattern T. This pat-
tern matches any value matched by the type pattern T (§24.2); it binds the variable
name to that value.

24.1.3 Literal Patterns

Syntax:

SimplePattern ::= Literal

A literal pattern L matches any value that is equal (in terms of ==) to the literal L.
The type of L type must conform to the expected type of the pattern.
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24.1.4 Stable Identifier Patterns
Syntax:

SimplePattern ::= Stableld

A stable identifier pattern is a stable identifier r (§19.1). The type of r must conform
to the expected type of the pattern. The pattern matches any value v such that
r == v (§28.1).

To resolve the syntactic overlap with a variable pattern, a stable identifier pattern
may not be a simple name starting with a lower-case letter. However, it is possible to
enclose a such a variable name in backquotes; then it is treated as a stable identifier
pattern.

Example 24.1.2 Consider the following function definition:

def f(x: Int, y: Int) = x match {
case y => ...

}

Here, vy is a variable pattern, which matches any value. If we wanted to turn the
pattern into a stable identifier pattern, this can be achieved as follows:

def f(x: Int, y: Int) = x match {
case ‘y‘ => ...

}

Now, the pattern matches the y parameter of the enclosing function f. That is, the
match succeeds only if the x argument and the y argument of f are equal.

24.1.5 Constructor Patterns

Syntax:

SimplePattern ::= StablelId ‘(’ [Patterns [‘,’]] °)
A constructor pattern is of the form c(py, ..., pn) where n = 0. It consists of a stable
identifier c, followed by element patterns py, ..., p,. The constructor cis a simple or

qualified name which denotes a case class (§21.3.2). If the case class is monomor-
phic, then it must conform to the expected type of the pattern, and the formal pa-
rameter types of x’s primary constructor (§21.3) are taken as the expected types of
the element patterns py, ..., pp. If the case class is polymorphic, then its type pa-
rameters are instantiated so that the instantiation of ¢ conforms to the expected
type of the pattern. The instantiated formal parameter types of ¢’s primary con-
structor are then taken as the expected types of the component patterns py, ..., px.
The pattern matches all objects created from constructor invocations c(vy, ..., V)
where each element pattern p; matches the corresponding value v;.
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A special case arises when ¢’s formal parameter types end in a repeated parameter.
This is further discussed in (§24.1.8).

24.1.6 Tuple Patterns

Syntax:

SimplePattern = ‘(C’ [Patterns [“,’]] 9’
A tuple pattern (py,...,pn) is an alias for the constructor pattern
scala.Tuplen(ps, ..., pn), where n = 2. The pattern may also be written with
a trailing comma, i.e. (py, ..., pn,). Unary tuple patterns can be expressed in this

syntax only by using a trailing comma, i.e. (p,). Finally, the empty tuple () is the
unique value of type scala.Unit.

24.1.7 Extractor Patterns

Syntax:
SimplePattern ::= Stableld ‘(’ [Patterns [‘,’]] ‘)’
An extractor pattern x(py, ..., pn) where n = 0 is of the same syntactic form as a

constructor pattern. However, instead of a case class, the stable identifier x denotes
an object which has a member method named unapply or unapplySeq that matches
the pattern.

Anunapply method in an object x matchesthe pattern x(py, ..., p,) ifit takes exactly
one argument and one of the following applies:

n = 0 and unapply’s result type is boolean. In this case the extractor pattern
matches all values v for which x.unapply(v) yields true.

n =1 and unapply’s result type is Option[ T'], for some type T. In this case,
the (only) argument pattern p; is typed in turn with expected type T. The
extractor pattern matches then all values v for which x.unapply(v) yields a
value of form Some(v;), and p; matches v;.

n > 1 and unapply’s result type is Option[{Tj,..., T,}1, for some types
Ti, ..., Ty. In this case, the argument patterns py, ..., p, are typed in turn
with expected types T1, ..., T,,. The extractor pattern matches then all values
v for which x.unapply(v) yields a value of form Some({vy, ..., v,}), and each
pattern p; matches the corresponding value v;.

An unapplySeq method in an object x matches the pattern x(py, ..., p,) if it takes
exactly one argument and its result type is of the form Option[S], where S is a sub-
type of Seq[ T'] for some element type T. This case is further discussed in (§24.1.8).
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24.1.8 Pattern Sequences

Syntax:

SimplePattern ::= StableId ‘(’ [Patterns ‘,’] ‘_’ ‘=’ )’
A pattern sequence py, ..., p, appears in two contexts. First, in a constructor pat-
tern c(qy, ..., Gm, P1, ---, Pn), Where c is a case class which has m + 1 primary con-
structor parameters, ending in a repeated parameter (§20.6.2) of type S*. Second,
in an extractor pattern x(p, ..., pn) if the extractor object x has an unapplySeq

method with a result type conforming to Seq[S], but does not have an unapply
method that matches py, ..., pn. The expected type for the pattern sequence is in
each case the type S.

The last pattern in a pattern sequence may be a sequence wildcard _«. Each ele-
ment pattern p; is type-checked with S as expected type, unless it is a sequence
wildcard. If a final sequence wildcard is present, the pattern matches all values v

that are sequences which start with elements matching patterns py, ..., pn-1. If no
final sequence wildcard is given, the pattern matches all values v that are sequences
of length n which consist of elements matching patterns py, ..., pn.

24.1.9 Infix Operation Patterns
Syntax:

Pattern3 ::= SimplePattern {id [nl] SimplePattern}

An infix operation pattern p op g is a shorthand for the constructor or extractor
pattern op(p, q). The precedence and associativity of operators in patterns is the
same as in expressions (§22.11).

An infix operation pattern p op (qi, ..., qn) is a shorthand for the constructor or
extractor pattern op(p, g1, ..., qn)-

24.1.10 Pattern Alternatives

Syntax:
Pattern ::= Patternl { ‘|’ Patternl }
A pattern alternative p; | ... | p, consists of a number of alternative patterns

pi. All alternative patterns are type checked with the expected type of the pattern.
They may no bind variables other than wildcards. The alternative pattern matches
avalue v if at least one its alternatives matches v.

24.1.11 XML Patterns

XML patterns are treated in §26.2.
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24.1.12 Regular Expression Patterns

Regular expression patterns have been discontinued in Scala from version 2.0.

Later version of Scala provide a much simplified version of regular expression pat-
terns that cover most scenarios of non-text sequence processing. A sequence pattern
is a pattern that stands in a position where either (1) a pattern of a type T which is
conforming to Seq[A] for some A is expected, or (2) a case class constructor that has
an iterated formal parameter Ax. A wildcard star pattern _= in the rightmost posi-
tion stands for arbitrary long sequences. It can be bound to variables, as usual, in
which case the variable will have the type Seq[A].

24.1.13 lrrefutable Patterns

A pattern p is irrefutable for a type T, if one of the following applies:

1. pisavariable pattern,
2. pisatypedpattern x: T',and T <: T',

3. pisaconstructor pattern c¢(py, ..., pn), the type T is an instance of class c, the
primary constructor (§21.3) of type T has argument types 11, ..., T, and each
pi is irrefutable for T;.

24.2 Type Patterns

Syntax:

TypePat ::= CompoundTypePat {id [nl] CompoundTypePat}
CompoundTypePat = AnnotTypePat {with AnnotTypePat}
AnnotTypePat ::= {Annotation} SimpleTypePat
SimpleTypePat = SimpleTypePatl [TypePatArgs]
SimpleTypePatl ::= SimpleTypePatl ‘#’ id

| Stableld

| Path ‘.’ type

| “C ArgTypePats [“,’] ‘)’
TypePatArgs = ‘[’ ArgTypePats ']’
ArgTypePats ::= ArgTypePat {‘,’ ArgTypePat}
ArgTypePat := varid

| (] _ ’

| Type

Type patterns consist of types, type variables, and wildcards. A type pattern T is of
one of the following forms:
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* Areference to a class C, p.C, or T#C. This type pattern matches any non-null
instance of the given class. Note that the prefix of the class, if it is given, is rel-
evant for determining class instances. For instance, the pattern p.C matches
only instances of classes C which were created with the path p as prefix.

The bottom types scala.Nothing and scala.Null cannot be used as type pat-
terns, because they would match nothing in any case.

* A singleton type p.type. This type pattern matches only the value denoted
by the path p (that is, a pattern match involved a comparison of the matched
value with p using method eq in class AnyRef).

* A compound type pattern 77 with ... with T}, where each T; is a type pat-
tern. This type pattern matches all values that are matched by each of the type
patterns T;.

* A parameterized type pattern T'[a,, ..., a,], where the a; are type variable pat-
terns or wildcards _. This type pattern matches all values which match T for
some arbitrary instantiation of the type variables and wildcards. The bounds
or alias type of these type variable are determined as described in (§24.3).

* A parameterized type pattern scala.Array[7;], where T is a type pattern.
This type pattern matches any non-null instance of type scala.Array[U;],
where U, is a type matched by 7.

Also accepted is a parameterized type pattern of the form T[Uy, ..., U,] where T is
different from scala.Array and some of the U; are types instead of type variable
patterns or wildcards. However, such a type pattern will be translated to the erasure
(§19.6) of T'[Uy, ..., Uyl. The Scala compiler will issue an “unchecked” warning for
these patterns to flag the possible loss of type-safety.

A type variable pattern is a simple identifier which starts with a lower case letter.
However, the predefined primitive type aliases unit, boolean, byte, short, char,
int, long, float, and double are not classified as type variable patterns.

24.3 Type Parameter Inference in Patterns

Type parameter inference is the process of finding bounds for the bound type vari-
ables in a typed pattern or constructor pattern. Inference takes into account the
expected type of the pattern.

Type parameter inference for typed patterns.. Assume a typed pattern p: T'. Let
T result from T’ where all wildcards in T’ are renamed to fresh variable names. Let
ai, ..., a, be the type variables in T. These type variables are considered bound in
the pattern. Let the expected type of the pattern be pt.
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Type parameter inference constructs first a set of subtype constraints over the type
variables a;. The initial constraints set 6, reflects just the bounds of these type vari-

ables. That is, assuming T has bound type variables ay, ..., a, which correspond
to class type parameters a’l, ..., a,, with lower bounds Ly, ..., L,, and upper bounds
Ui, ..., Uy, 6 contains the constraints
a; <. oU; i=1,...,n
oL; <. a; (i=1,...,n
where o is the substitution [a] 1= ay, ..., a), 1= a,].

The set 6 is then augmented by further subtype constraints. There are two cases.

Case 1:. If there exists a substitution o over the type variables a;, ..., a, such that
oT conforms to pt, one determines the weakest subtype constraints 46; over the
type variables ay, ..., a, such that €y A 6, implies that T conforms to pt.

Case 2:. Otherwise, if T can not be made to conform to pt by instantiating its type
variables, one determines all type variables in pt which are defined as type param-
eters of a method enclosing the pattern. Let the set of such type parameters be
by, ..., by. Let 6, be the subtype constraints reflecting the bounds of the type vari-
ables b;. If T denotes an instance type of a final class, let 6> be the weakest set
of subtype constraints over the type variables ay, ..., a, and by, ..., by, such that
o N\ 6, A 6 implies that T conforms to pt. If T does not denote an instance type
of a final class, let 6> be the weakest set of subtype constraints over the type vari-
ables ay, ..., a, and by, ..., b,, such that 6, A <€6 A 6> implies that it is possible to
construct a type T’ which conforms to both T and pt. It is a static error if there is no
satisfiable set of constraints %> with this property.

The final step consists in choosing type bounds for the type variables which imply
the established constraint system. The process is different for the two cases above.

Case 1:. We take a; >: L; <: U; where each L; is minimal and each U; is maximal
wrt <:such that a; >: L; <: U; for i =1, ..., n implies 6y A 6.

Case 2:. We take a; >: L; <: U; and b; >: L <: U] where each L; and L’j is minimal
and each U; and U]'. is maximal such that a; >: L; <: U; for i = 1,..., n and b; >:
L’j < U} for j=1,..., mimplies €y A €y A 6.

In both cases, local type inference is permitted to limit the complexity of inferred

bounds. Minimality and maximality of types have to be understood relative to the
set of types of acceptable complexity.
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Type parameter inference for constructor patterns.. Assume a constructor pat-
tern C(py, ..., pn) where class C has type type parameters aj, ..., a,. These type pa-
rameters are inferred in the same way as for the typed pattern (_: Clay, ..., a,l).

Example 24.3.1 Consider the program fragment:

val x: Any
x match {
case y: List[A] => ...

}

Here, the type pattern List[a] is matched against the expected type Any. The pat-
tern binds the type variable a. Since List[a] conforms to Any for every type argu-
ment, there are no constraints on a. Hence, a is introduced as an abstract type with
no bounds. The scope of a is the case clause containing it.

On the other hand, if x is declared as

val x: List[List[String]],

this generates the constraint List[a] <: List[List[String]], which simplifies to
a <: List[String], because List is covariant. Hence, a is introduced with upper
bound List[String].

Example 24.3.2 Consider the program fragment:

val x: Any
X match {
case y: List[String] => ...

}

Scala does not maintain information about type arguments at run-time, so there is
no way to check that x is a list of strings. Instead, the Scala compiler will erase (§19.6)
the pattern to List[_]; that is, it will only test whether the top-level runtime-class
of the value x conforms to List, and the pattern match will succeed if it does. This
might lead to a class cast exception later on, in the case where the list x contains
elements other than strings. The Scala compiler will flag this potential loss of type-
safety with an “unchecked” warning message.

Example 24.3.3 Consider the program fragment

class Term[A]
class Number(val n: Int) extends Term[Int]
def f[B](t: Term[B]): B = t match {

case y: Number => y.n

}
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The expected type of the pattern y: Number is Term[B]. The type Number does not
conform to Term[B]; hence Case 2 of the rules above applies. This means that b
is treated as another type variable for which subtype constraints are inferred. In
our case the applicable constraint is Number <: Term[B], which entails B = Int.
Hence, Bis treated in the case clause as an abstract type with lower and upper bound
Int. Therefore, the right hand side of the case clause, y.n, of type Int, is found to
conform to the function’s declared result type, Number.

24.4 Pattern Matching Expressions

Syntax:
Expr = PostfixExpr match ‘{’ CaseClauses ‘}’
CaseClauses = CaseClause {CaseClause}
CaseClause = case Pattern [Guard] ‘=>’ Block

A pattern matching expression

e match { case p; => by ... case p, => b, }

consists of a selector expression e and a number n > 0 of cases. Each case consists
of a (possibly guarded) pattern p; and a block b;. Each p; might be complemented
by aguard if e where e is a boolean expression. The scope of the pattern variables
in p; comprises the pattern’s guard and the corresponding block b;.

Let T be the type of the selector expression e and let ay, ..., a,, be the type param-
eters of all methods enclosing the pattern matching expression. For every a;, let L;
be its lower bound and Uj; be its higher bound. Every pattern p € {p,,, ..., ps} can
be typed in two ways. First, it is attempted to type p with T as its expected type. If
this fails, p is instead typed with a modified expected type T’ which results from T
by replacing every occurrence of a type parameter a; by undefined. If this second
step fails also, a compile-time error results. If the second step succeeds, let T, be
the type of pattern p seen as an expression. One then determines minimal bounds
L, ..., L', and maximal bounds Uj, ..., Uy, such that for all i, L; <: L’l. and Ulf <:U;
and the following constraint system is satisfied:

Li<ai<UAN...ANLp<tam<:Up > Tp<:T

If no such bounds can be found, a compile time error results. If such bounds are
found, the pattern matching clause starting with p is then typed under the assump-
tion that each a; has lower bound L', instead of L; and has upper bound U’ instead
of U;.

The expected type of every block b; is the expected type of the whole pattern match-
ing expression. The type of the pattern matching expression is then the least upper
bound of the types of all blocks b;.
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When applying a pattern matching expression to a selector value, patterns are tried
in sequence until one is found which matches the selector value (§24.1). Say this
case is case p; = b;. The result of the whole expression is then the result of evalu-
ating b;, where all pattern variables of p; are bound to the corresponding parts of
the selector value. If no matching pattern is found, a scala.MatchError exception
is thrown.

The pattern in a case may also be followed by a guard suffix if e with a boolean
expression e. The guard expression is evaluated if the preceding pattern in the case
matches. If the guard expression evaluates to true, the pattern match succeeds as
normal. If the guard expression evaluates to false, the pattern in the case is con-
sidered not to match and the search for a matching pattern continues.

In the interest of efficiency the evaluation of a pattern matching expression may try
patterns in some other order than textual sequence. This might affect evaluation
through side effects in guards. However, it is guaranteed that a guard expression is
evaluated only if the pattern it guards matches.

If the selector of a pattern match is an instance of a sealed class (§21.2), the com-
pilation of pattern matching can emit warnings which diagnose that a given set of
patterns is not exhaustive, i.e. that there is a possibility of a MatchError being raised
at run-time.

Example 24.4.1 Consider the following definitions of arithmetic terms:

abstract class Term[T]
case class Lit(x: Int) extends Term[Int]
case class Succ(t: Term[Int]) extends Term[Int]
case class IsZero(t: Term[Int]) extends Term[Boolean]
case class If[T](c: Term[Boolean],
tl: Term[T],
t2: Term[T]) extends Term[T]

There are terms to represent numeric literals, incrementation, a zero test, and a
conditional. Every term carries as a type parameter the type of the expression it
representes (either Int or Boolean).

A type-safe evaluator for such terms can be written as follows.

def eval[T](t: Term[T]): T = t match {

case Lit(n) => n

case Succ(u) => eval(u) + 1

case IsZero(u) => eval(u) ==

case If(c, ul, u2) => eval(if (eval(c)) ul else u2)

}

Note that the evaluator makes crucial use of the fact that type parameters of enclos-
ing methods can acquire new bounds through pattern matching.
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For instance, the type of the pattern in the second case, Succ(u), is Int. It conforms
to the selector type T only if we assume an upper and lower bound of Int for T.
Under the assumption Int <: T <: Int we can also verify that the type right hand
side of the second case, Int conforms to its expected type, T.

24.5 Pattern Matching Anonymous Functions

Syntax:

BlockExpr ::= ‘{’ CaseClauses ‘}’

An anonymous function can be defined by a sequence of cases

{ case p; => by ... case p, => b, }
which appear as an expression without a prior match. The ex-
pected type of such an expression must in part be defined. It
must be either scala.Functionk[Sy,..., Sk, R] for some k > 0, or
scala.PartialFunction[S;, R], where the argument type(s) Si,..., Sy must

be fully determined, but the result type R may be undetermined.

If the expected type is scala.Functionk[S;,..., Sx, R],the expression is taken to
be equivalent to the anonymous function:

(x1:81, ..., X : Sg) = (x1,..., Xx) match {
case p; => by ... case p, => by

}

Here, each x; is a fresh name. As was shown in (§22.22), this anonymous function is
in turn equivalent to the following instance creation expression, where T is the least
upper bound of the types of all b;.

new scala.Functionk[Sy,..., Sk, T1 {
def apply(x;:Si, ..., X:Sp): T = (x1,..., X)) match {
case p; => by ... case p, => by
}
3

If the expected type is scala.PartialFunction[S, R], the expression is taken to
be equivalent to the following instance creation expression:

new scala.PartialFunction[S, T] {
def apply(x: S): T = x match {
case p; => by ... case p, => by
}
def isDefinedAt(x: S): Boolean = {
case p; => true ... case p, => true
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case _ => false
}
}

Here, x is a fresh name and T is the least upper bound of the types of all b;. The final
default case in the isDefinedAt method is omitted if one of the patterns py, ..., px
is already a variable or wildcard pattern.

Example 24.5.1 Here is a method which uses a fold-left operation /: to compute
the scalar product of two vectors:

def scalarProduct(xs: Array[Double], ys: Array[Double]) =
(0.0 /: (xs zip vys)) {
case (a, (b, ¢)) =>a + b * ¢

}

The case clauses in this code are equivalent to the following anonymous funciton:

(x, v) = (x, y) match {
case (a, (b, ¢)) =>a +b * ¢

}






Chapter 25

Top-Level Definitions

25.1 Compilation Units

Syntax:

CompilationUnit = [package QualIld semi] TopStatSeq

TopStatSeq = TopStat {semi TopStat}

TopStat ::= {Annotation} {Modifier} TmplDef
| Import
| Packaging
|

Qualld ii= did {‘.’ id}

A compilation unit consists of a sequence of packagings, import clauses, and class
and object definitions, which may be preceded by a package clause.

A compilation unit package p; stats starting with a package clause is equivalent
to a compilation unit consisting of a single packaging package p { stats }.

Implicitly imported into every compilation unit are, in that order : the package
java.lang, the package scala, and the object scala.Predef (§28.5). Members of
a later import in that order hide members of an earlier import.

25.2 Packagings
Syntax:
Packaging ::= package Qualld [nl] ‘{’ TopStatSeq ‘}’

A package is a special object which defines a set of member classes, objects and
packages. Unlike other objects, packages are not introduced by a definition. In-
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stead, the set of members of a package is determined by packagings.

A packaging package p { ds } injects all definitions in ds as members into the
package whose qualified name is p. Members of a package are called top-level def-
initions. If a definition in ds is labeled private, it is visible only for other members
in the package.

Selections p.m from p as well as imports from p work as for objects. However, unlike
other objects, packages may not be used as values. Itisillegal to have a package with
the same fully qualified name as a module or a class.

Top-level definitions outside a packaging are assumed to be injected into a special
empty package. That package cannot be named and therefore cannot be imported.
However, members of the empty package are visible to each other without qualifi-
cation.

25.3 Package References

Syntax:
QualId ::= did {‘.” id}

A reference to a package takes the form of a qualified identifier. Like all other ref-
erences, package references are relative. That is, a package reference starting in
a name p will be looked up in the closest enclosing scope that defines a member
named p.

The special predefined name _root_ refers to the outermost root package which
contains all top-level packages.

Example 25.3.1 Consider the following program:

package b {
class B

}

package a.b {
class A {
val x = new _root_b.B
}
3

Here, the reference _root_b.B refers to class B in the toplevel package b. If the
_root_ prefix had been omitted, the name b would instead resolve to the package
a.b, and, provided that package does not also contain a class B, a compiler-time
error would result.
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25.4 Programs

A program is a top-level object that has a member method main of type
(Array[String])Unit. Programs can be executed from a command shell. The pro-
gram’s command arguments are are passed to the main method as a parameter of
type Array[String].

The main method of a program can be directly defined in the object, or it can be in-
herited. The scala library defines a class scala.Application that defines an empty
inherited main method. An objects m inheriting from this class is thus a program,
which executes the initializaton code of the object m.

Example 25.4.1 The following example will create a hello world program by defin-
ing a method main in module test.HelloWorld.

package test
object HelloWord {

def main(args: Array[String]) { println("hello world") }
}

This program can be started by the command

scala test.HelloWorld

In a Java environment, the command

java test.HelloWorld

would work as well.

HelloWorld can also be defined without a main method by inheriting from
Application instead:

package test

object HelloWord extends Application {
println("hello world")

}






Chapter 26

XML expressions and patterns

By Burak Emir

This chapter describes the syntactic structure of XML expressions and patterns. It
follows as close as possible the XML 1.0 specification [W3Cb], changes being man-
dated by the possibility of embedding Scala code fragments.

26.1 XML expressions

XML expressions are expressions generated by the following production, where the
opening bracket ‘<’ of the first element must be in a position to start the lexical XML
mode (§17.5).

Syntax:

XmlExpr ::= XmlContent {Element}

Well-formedness constraints of the XML specification apply, which means for in-
stance that start tags and end tags must match, and attributes may only be defined
once, with the exception of constraints related to entity resolution.

The following productions describe Scala’s extensible markup language, designed
as close as possible to the W3C extensible markup language standard. Only the
productions for attribute values and character data are changed. Scala does not
support neither declarations, CDATA sections nor processing instructions. Entity
references are not resolved at runtime.

Syntax:

Element 1= EmptyElemTag
| STag Content ETag
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EmptyElemTag = ‘<’ Name {S Attribute} [S] ‘/>’
STag 1= ‘<’ Name {S Attribute} [S] ‘>’
ETag 1= ‘</’ Name [S] ’>’
Content ti= [CharData] {Contentl [CharData]}
Contentl = XmlContent

| Reference

| ScalaExpr
XmlContent 1= Element

| CDSect

| PI

| Comment

If an XML expression is a single element, its value is a runtime representation of
an XML node (an instance of a subclass of scala.xml.Node). If the XML expression
consists of more than one element, then its value is a runtime representation of a
sequence of XML nodes (an instance of a subclass of scala.Seq[scala.xml.Node]).

If an XML expression is an entity reference, CDATA section, processing instructions
or a comments, it is represented by an instance of the corresponding Scala runtime
class.

By default, beginning and trailing whitespace in element content is removed, and
consecutive occurrences of whitespace are replaced by a single space character
\u0020. This behavior can be changed to preserve all whitespace with a compiler
option. Syntax:

Attribute ::= Name Eq AttValue

AttValue " fCharQ | CharRef} ‘"’

| 7’ {CharA | CharRef} ¢’
|

ScalaExp
ScalaExpr = “{" expr ‘}’
CharData = { CharNoRef } without {CharNoRef}‘{’CharB {CharNoRef}

and without {CharNoRef}‘]]1>’{CharNoRef}

XML expressions may contain Scala expressions as attribute values or within nodes.
In the latter case, these are embedded using a single opening brace ‘{’ and ended by
a closing brace ‘}’. To express a single opening braces within XML text as generated
by CharData, it must be doubled. Thus, ‘{{ represents the XML text  and does not
introduce an embedded Scala expression.

Syntax:

BaseChar, Char, Comment, CombiningChar, Ideographic, NameChar, S, Reference
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1:=  ‘asin W3C XML"
Charl ::= Char without ‘<’ | ‘&’
CharQ ::= Charl without ‘'’
CharA ::= Charl without ‘"’
CharB ::= Charl without ’{’
Name ::= XNameStart {NameChar}
XNameStart ::= ‘_" | BaseChar | Ideographic

(as in W3C XML, but without *:’

26.2 XML patterns

XML patterns are patterns generated by the following production, where the open-
ing bracket ‘<’ of the element patterns must be in a position to start the lexical XML
mode (§17.5).

Syntax:

XmlPattern ::= ElementPattern

Well-formedness constraints of the XML specification apply.

An XML pattern has to be a single element pattern. It matches exactly those runtime
representations of an XML tree that have the same structure as described by the
pattern. XML patterns may contain Scala patterns(§24.4).

Whitespace is treated the same way as in XML expressions. Patterns that are entity
references, CDATA sections, processing instructions and comments match runtime
representations which are the the same.

By default, beginning and trailing whitespace in element content is removed, and
consecutive occurrences of whitespace are replaced by a single space character
\u0020. This behavior can be changed to preserve all whitespace with a compiler
option.

Syntax:
ElemPattern 1= EmptyElemTagP
| STagP ContentP ETagP
EmptyElemTagP ::= ’<’ Name [S] ’/>’
STagP 1= ’<’ Name [S] ’>’
ETagP HEES ’</’ Name [S] ’>’
ContentP 1= [CharData] {(ElemPattern|ScalaPatterns) [CharData]}

ContentPl S ElemPattern
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ScalaPatterns ::

Reference
CDSect

PI

Comment
ScalaPatterns
’{’ patterns '}’
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User-Defined Annotations

Syntax:
Annotation ::= ‘@ AnnotationExpr [nl]
AnnotationExpr ::= Constr [‘{’ {NameValuePair} ‘}’]
NameValuePair ::= val id ‘=’ PrefixExpr

User-defined annotations associate meta-information with definitions. A simple
annotation has the form @c or @c(ay, ..., a,). Here, c is a constructor of a class C,
which must conform to the class scala.Annotation. The constructor may be op-
tionally followed by a list of name/value pairs in braces, e.g. {n; =cy, ..., ng = cx}.
All values c; in that list must be constant expressions, as defined below.

Annotations may apply to definitions or declarations, types, or expressions. An an-
notation of a definition or declaration appears in front of that definition. An annota-
tion of a type appears in front of that type. An annotation of an expression e appears
after the expression e, separated by a colon. More than one annotation clause may
apply to an entity. The order in which these annotations are given does not matter.

Examples:
@serializable class C { ... } // A class annotation.
@transient @volatile var m: Int // A variable annotation
@local String // A type annotation
(e: @unchecked) match { ... } // An expression annotation

The meaning of annotation clauses is implementation-dependent. On the Java plat-
form, the following annotations have a standard meaning.

@transient

Marks a field to be non-persistent; this is equivalent to the transient
modifier in Java.
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@volatile

Marks a field which can change its value outside the control of the pro-
gram; this is equivalent to the volatile modifier in Java.

@serializable

Marks a class to be serializable; this is equivalent to inheriting from the
java.io.Serializable interface in Java.

@SerialVersionUID(<longlit>)

Attaches a serial version identifier (a long constant) to a class. This is
equivalent to a the following field definition in Java:

private final static SerialVersionUID = <longlit>

@throws(<classlit>)

A Java compiler checks that a program contains handlers for checked
exceptions by analyzing which checked exceptions can result from exe-
cution of a method or constructor. For each checked exception which is
a possible result, the throws clause for the method or constructor must
mention the class of that exception or one of the superclasses of the
class of that exception. Since Scala has no checked exceptions, Scala
methods must be annotated with one or more throws annotations such
that Java code can catch exceptions thrown by a Scala method.

@deprecated

Marks a definition as deprecated. Accesses to the defined entity will
then cause a deprecated warnig to be issued from the compiler. Depre-
cated warnings are suppressed in code that belongs itself to a definition
that is labeled deprecated.

@scala.reflect.BeanProperty

When prefixed to a definition of some variable X, this annotation causes
getter and setter methods getX, setX in the Java bean style to be added
in the class containing the variable. The first letter of the variable ap-
pears capitalized after the get or set. When the annotation is added to
the definition of an immutable value definition X, only a getter is gen-
erated. The construction of these methods is part of code-generation;
therefore, these methods become visible only once a classfile for the
containing class is generated.
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@unchecked

When applied to the selector of a match expression, this attribute sup-
presses any warnings about non-exhaustive pattern matches which
would otherwise be emitted. For instance, no warnings would be pro-
duced for the method definition below.

def f(x: Option[int]) = (x: @unchecked) match {
case Some(y) => vy

}

Without the @unchecked annotation, a Scala compiler could infer that
the pattern match is non-exhaustive, and could produce a warning be-
cause Option is a sealed class.

Other annotations may be interpreted by platform- or application-dependent tools.
Class scala.Annotation has two sub-traits which are used to indicate how these
annotations are retained. Instances of an annotation class inheriting from trait
scala.ClassfileAnnotation will be stored in the generated class files. Instances
of an annotation class inheriting from trait scala.StaticAnnotation will be visible
to the Scala type-checker in every compilation unit where the annotated symbol is
accessed. An annotation class can inherit from both scala.ClassfileAnnotation
and scala.StaticAnnotation. If an annotation class inherits from neither
scala.ClassfileAnnotation nor scala.StaticAnnotation, its instances are visible
only locally during the compilation run that analyzes them.

Classes inheriting from scala.ClassfileAnnotation may be subject to further re-
strictions in order to assure that they can be mapped to the host environment. In
particular, on both the Java and the .NET platforms, such classes must be toplevel;
i.e. they may not be contained in another class or object. Additionally, on both Java
and .NET, all constructor arguments must be constant expressions.

The definition of “constant expressions” depends on the platform, but must include
at least the expressions of the following forms:

* Aliteral of a value class, such as an integer
* Astring literal
¢ A class constructed with classOf

* An element of an enumeration from the underlying platform

A literal array, of the form @Array(cy, ..., ¢,;), where all of the c;’s are them-
selves constant expressions






Chapter 28
The Scala Standard Library

The Scala standard library consists of the package scala with a number of classes
and modules. Some of these classes are described in the following.

28.1 Root Classes

Figure 28 illustrates Scala’s class hierarchy. The root of this hierarchy is formed by
class Any. Every class in a Scala execution environment inherits directly or indirectly
from this class. Class Any has two direct subclasses: AnyRef andAnyVal.

The subclass AnyRef represents all values which are represented as objects in the
underlying host system. Every user-defined Scala class inherits directly or indi-
rectly from this class. Furthermore, every user-defined Scala class also inherits
the trait scala.ScalaObject. Classes written in other languages still inherit from
scala.AnyRef, but not from scala.ScalaObject.

The class AnyVal has a fixed number subclasses, which describe values which are
not implemented as objects in the underlying host system.

Classes AnyRef and AnyVal are required to provide only the members declared in
class Any, but implementations may add host-specific methods to these classes (for
instance, an implementation may identify class AnyRef with its own root class for
objects).

The signatures of these root classes are described by the following definitions.
package scala

/##% The universal root class */
abstract class Any {

/*# Defined equality; abstract here =/
def equals(that: Any): Boolean
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<—— Subtype
i <—— View

scala.AnyRef
(java.lang.Object)

scala.AnyVal

scala.ScalaObject

Vad

scala.Double
scala.Unit

SNo
scala.Boolean
scala.Char
|
/
/

scala.lterable : .
java.lang.String
scala.Seq
scala.List

N ... (other Scala classes). . .
T scala.Short
Ved
[
N
~
= scala.Byte

... (other Java classes). ..

\

scala.Null

scala.Nothing

Figure 28.1: Class hierarchy of Scala.

/+*+* Semantic equality between values of same type */
final def == (that: Any): Boolean = this equals that

/*+ Semantic inequality between values of same type +*/
final def != (that: Any): Boolean = !(this == that)

/%% Hash code; abstract here =*/
def hashCode(): Int = ...

/*% Textual representation; abstract here =/
def toString(): String = ...

/#** Type test; needs to be inlined to work as given =/
def isInstanceOf[a]: Boolean = this match {

case x: a => true

case _ => false

/#*+ Type cast; needs to be inlined to work as given =%/ =/
def asInstanceOf[A]: A = this match {
case X: A => x
case _ => if (this eq null) this
else throw new ClassCastException()
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/#*+ The root class of all value types */
final class AnyVal extends Any

/*% The root class of all reference types =/
class AnyRef extends Any {

def equals(that: Any): Boolean = this eq that

final def eq(that: AnyRef): Boolean = ... // reference equality

def hashCode(): Int = ... // hashCode computed from allocation address

def toString(): String = ... // toString computed from hashCode and class name

/#*+ A mixin class for every user-defined Scala class +*/
trait ScalaObject extends AnyRef

The test x.asInstanceOf[T] is treated specially if T is a numeric value type
(§28.2. In this case the cast will be translated to an application of a conversion
method x.toT (§28.2.1). For non-numeric values x the operation will raise a
ClassCastException.

28.2 Value Classes

Value classes are classes whose instances are not represented as objects by the un-
derlying host system. All value classes inherit from class AnyVal. Scala implemen-
tations need to provide the value classes Unit, Boolean, Double, Float, Long, Int,
Char, Short, and Byte (but are free to provide others as well). The signatures of
these classes are defined in the following.

28.2.1 Numeric Value Types

Classes Double, Float, Long, Int, Char, Short, and Byte are together called numeric
value types. Classes Byte, Short, or Char are called subrange types. Subrange types,
as well as Int and Long are called integer types, whereas Float and Double are called
floating point types.

Numeric value types are ranked in the following partial order:

Byte - Short

\
Int - Long - Float - Double

/
Char

Byte and Short are the lowest-ranked types in this order, whereas Double is the
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highest-ranked. Ranking does not imply a conformance (§19.5.2) relationship; for
instance Int is not a subtype of Long. However, object Predef (§28.5) defines views
(§23.3) from every numeric value type to all higher-ranked numeric value types.
Therefore, lower-ranked types are implicitly converted to higher-ranked types when
required by the context (§22.24).

Given two numeric value types S and T, the operation type of S and T is defined as
follows: If both S and T are subrange types then the operation type of S and T is Int.
Otherwise the operation type of S and T is the larger of the two types wrt ranking.
Given two numeric values v and w the operation type of v and w is the operation
type of their run-time types.

Any numeric value type T supports the following methods.

* Comparison methods for equals (==), not-equals (!=), less-than (<), greater-
than (>), less-than-or-equals (<=), greater-than-or-equals (>=), which each ex-
ist in 7 overloaded alternatives. Each alternative takes a parameter of some
numeric value type. Its result type is type Boolean. The operation is evalu-
ated by converting the receiver and its argument to their operation type and
performing the given comparison operation of that type.

e Arithmetic methods addition (+), subtraction (-), multiplication (), division
(/), and remainder (%), which each exist in 7 overloaded alternatives. Each
alternative takes a parameter of some numeric value type U. Its result type is
the operation type of T and U. The operation is evaluated by converting the
receiver and its argument to their operation type and performing the given
arithmetic operation of that type.

* Parameterless arithmethic methods identity (+) and negation (-), with result
type T. The first of these returns the receiver unchanged, whereas the second
returns its negation.

e Conversion methods toByte, toShort, toChar, toInt, toLong, toFloat,
toDouble which convert the receiver object to the target type, using the rules
of Java’s numeric type cast operation. The conversion might truncate the nu-
meric value (as when going from Long to Int or from Int to Byte) or it might
lose precision (as when going from Double to Float or when converting be-
tween Long and Float).

Integer numeric value types support in addition the following operations:

e Bit manipulation methods bitewise-and (&), bitwise-or |, and bitwise-
exclsuive-or (A), which each exist in 5 overloaded alternatives. Each alterna-
tive takes a parameter of some integer numeric value type. Its result type is
the operation type of T and U. The operation is evaluated by converting the
receiver and its argument to their operation type and performing the given
bitwise operation of that type.
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* A parameterless bit-negation method (~). Its result type is the reciver type
T or Int, whichevery is larger. The operation is evaluated by converting the
receiver to the result type and negating every bit in its value.

* Bit-shift methods left-shift (<<), arithmetic right-shift (>>), and unsigned
right-shift (>>>). Each of these methods of has two overloaded alternatives,
which take a parameter n of type Int, respectively Long. The result type of
the operation is the reciver type T, or Int, whichever is larger. The operation
is evaluated by converting the receiver to the result type and performing the
specified shift by n bits.

Numeric value types also implement operations equals, hashCode, and toString
from class Any.

The equals method tests whether the argument is a numeric value type. If this is
true, it will perform the == operation which is appropriate for that type. That is, the
equals method of a numeric value type can be thought of being defined as follows:

def equals(other: Any): Boolean = other match {

case that: Byte => this == that
case that: Short => this == that
case that: Char => this == that
case that: Int => this == that
case that: Long => this == that
case that: Float => this == that
case that: Double => this == that
case _ => false

}

The hashCode method returns an integer hashcode that maps equal numeric val-
ues to equal results. It is guaranteed to be the identity for for type Int and for all
subrange types.

The toString method displays its receiver as an integer or floating point number.

Example 28.2.1 As an example, here is the signature of the numeric value type Int:

package scala

abstract sealed class Int extends AnyVal {
def == (that: Double): Boolean // double equality
def == (that: Float): Boolean // float equality
def == (that: Long): Boolean // long equality
def == (that: Int): Boolean // int equality
def == (that: Short): Boolean // int equality
def == (that: Byte): Boolean // int equality
def == (that: Char): Boolean // int equality
/#* analogous for !=, <, >, <=, >= %/
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def + (that: Double): Double // double addition
def + (that: Float): Double // float addition
def + (that: Long): Long // long addition
def + (that: Int): Int // int addition
def + (that: Short): Int // int addition
def + (that: Byte): Int // int addition
def + (that: Char): Int // int addition
/* analogous for -, %, /, % */
def & (that: Long): Long // long bitwise and
def & (that: Int): Int // int bitwise and
def & (that: Short): Int // int bitwise and
def & (that: Byte): Int // int bitwise and
def & (that: Char): Int // int bitwise and
/#* analogous for [, A */
def << (cnt: Int): Int // int left shift
def << (cnt: Long): Int // long left shift

/% analogous for >>, >>> */

def unary_+ :
unary_- :
unary_-~ :

def
def

def
def
def
def

toByte:
toShort
toChar:
tolnt:

def toLong:
def toFloat
def toDoubl

Int // int iden

Int // int nega

Int
Byte // convert
: Short // convert
Char // convert
Int // convert
Long // convert
: Float // convert
e: Double // convert

28.2.2 Class Boolean

Class Boolean has only two values: true and false. It implements operations as

given in the following signature:

package scala
abstract sealed class Boolean extends AnyVal {

def && (p:
def || (p:
def & (x:
def | (x:
def == (x:

=> Boolean): Boolean // boolean
=> Boolean): Boolean // boolean

Boolean): Boolean // boolean
Boolean): Boolean // boolean
Boolean): Boolean // boolean

tity
tion

// int bitwise negation

to
to
to
to
to
to
to

Byte
Short
Char
Int
Long
Float
Double

and

or

strict and
strict or

equality
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def != (x: Boolean): Boolean // boolean inequality

def unary_!: Boolean // boolean negation

}

The class also implements operations equals, hashCode, and toString from class
Any.

The equals method returns true if the argument is the same boolean value as the re-
ceiver, false otherwise. The hashCode method returns 1 when invoked on true, and
0 when invokend on false. The toString method returns the receiver converted to
a string, i.e. either "true" or "false".

28.2.3 Class Unit

Class Unit has only one value: (). It implements only the three methods equals,
hashCode, and toString from class Any.

The equals method returns true if the argument is the unit value {}, false oth-
erwise. The hashCode method returns a fixed, implementation-specific hash-code,
The toString method returns "()".

28.3 Standard Reference Classes

This section presents some standard Scala reference classes which are treated in a
special way in Scala compiler — either Scala provides syntactic sugar for them, or
the Scala compiler generates special code for their operations. Other classes in the
standard Scala library are documented in the Scala library documentation by HTML

pages.
28.3.1 Class String

Scala’s String class is usually derived from the standard String class of the underly-
ing host system (and may be identified with it). For Scala clients the class is taken
to support in each case a method

def + (that: Any): String

which concatenates its left operand with the textual representation of its right
operand.

28.3.2 The Tuple classes

Scala defines tuple classes Tuplen for n =2, ..., 9. These are defined as follows.

package scala
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case class Tuplen[+a_1l, ..., +a_n](_1: a_1, ..., _n: a_n) {

def toString = "(" ++ _1 ++ "," ++ ... ++ ", +n ++ )"

}

The implicitly imported Predef object (§28.5) defines the names Pair as an alias of
Tuple2 and Triple as an alias for Tuple3.

28.3.3 The Function Classes

Scala defines function classes Functionn for n =1, ...,9. These are defined as fol-
lows.

package scala

trait Functionn[-a_1l, ..., -a_n, +b] {
def apply(x_1: a_1l, ..., x_n: a_n): b
def toString = "<function>"

}

A subclass of Functionl represents partial functions, which are undefined on some
points in their domain. In addition to the apply method of functions, partial func-
tions also have a isDefined method, which tells whether the function is defined at
the given argument:

class PartialFunction[-A, +B] extends Functionl[A, B] {
def isDefinedAt(x: A): Boolean
}

The implicitly imported Predef object (§28.5) defines the name Function as an alias
of Functionl.

28.3.4 Class Array

The class of generic arrays is given as follows.

final class Array[A](len: Int) extends Seq[A] {
def length: Int = len
def apply(i: Int): A = ...
def update(i: Int, x: A): Unit = ...
def elements: Iterator[A] = ...
def subArray(from: Int, end: Int): Array[A] = ...
def filter(p: A => Boolean): Array[A] = ...
def map[B](f: A => B): Array[B] = ...
def flatMap[B](f: A => Array[B]): Array[B] = ...
}

If T is not a type parameter or abstract type, the type Array[T] is represented as the
native array type [ 17 in the underlying host system. In that case length returns the
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length of the array, apply means subscribting, and update means element update.
Because of the syntactic sugar for apply and update operations (§22.24, we have the
following correspondences between Scala and Java/C# code for operations on an
array xs:

Scala Java/C#
xs.length xs.length
xs(1i) xs[i]
xs(i) = e xs[i] = e

Arrays also implement the sequence trait scala.Seq by defining an elements
method which returns all elements of the array in an Iterator.

Because of the tension between parametrized types in Scala and the ad-hoc imple-
mentation of arrays in the host-languages, some subtle points need to be taken into
account when dealing with arrays. These are explained in the following.

First, unlike arrays in Java or C#, arrays in Scala are not co-variant; Thatis, S <: T
does not imply Array[S] <: Array[T] in Scala. However, it is possible to cast an
array of S to an array of T if such a cast is permitted in the host enironment.

For instance Array[String] does not conform to Array[Object], even though
String conforms to Object. However, it is possible to cast an expression of type
Array[String] to Array[Object], and this cast will succeed withiout raising a
ClassCastException. Example:

val xs = new Array[String](2)
// val ys: Array[Object] = xs // =»%=%% error: incompatible types
val ys: Array[Object] = xs.asInstanceOf[Array[Object]] // OK

Second, for polymorphic arrays, that have a type parameter or abstract type T as
their element type, a representation different from [ 1T might be used. However, it is
guaranteed that isInstanceOf and asInstanceOf still work as if the array used the
standard representation of monomorphic arrays:

val ss = new Array[String](2)

def f[T](xs: Array[T]): Array[String] =
if (xs.isInstanceOf[Array[String]]) xs.asInstanceOf[Array[String])
else throw new Error('"not an instance")

f(ss) // returns ss

The representatuon chosen for polymorphic arrays also guarantees that polymor-
phic array creations work as expected. An example is the following implementation
of method mkArray, which creates an array of an arbitrary type T, given a sequence
of T’s which defines its elements.
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def mkArray[T](elems: Seq[T]): Array[T] = {
val result = new Array[T](elems.length)
var i = 0
for (elem <- elems) {
result(i) = elem
i+=1

Note that under Java’s erasure model of arrays the method above would not work as
expected —in fact it would always return an array of Object.

Third, in a Java environment there is a method System.arraycopy which takes two
objects as parameters together with start indices and a length argument, and copies
elements from one object to the other, provided the objects are arrays of compatible
element types. System.arraycopy will not work for Scala’s polymorphic arrays be-
cause of their different representation. One should instead use method Array. copy
which is defined in the companion object of class Array. This companion object
also defines various constructor methods for arrays, as well as the extractor method
unapplySeq (§24.1.7) which enables pattern matching over arrays.

package scala
object Array {
/*+* copies array elements from ‘src’ to ‘dest’. =/
def copy(src: AnyRef, srcPos: Int,
dest: AnyRef, destPos: Int, length: Int): Unit = ...

/*% Concatenate all argument arrays into a single array. */
def concat[T](xs: Array[T]«): Array[T] = ...

/*% Create a an array of successive integers. +*/
def range(start: Int, end: Int): Array[Int] = ...

/*% Create an array with given elements. +*/
def apply[A <: AnyRef](xs: Ax): Array[A] = ...

/#** Analogous to above. =/
def apply(xs: booleanx): Array[boolean]

def apply(xs: bytex) : Array[byte] =
def apply(xs: shortx) : Array[short] =
def apply(xs: charx) : Array[char] =
def apply(xs: int=x) : Array[int] =
def apply(xs: longx) : Array[long] =

def apply(xs: float*) : Array[float]
def apply(xs: doublex) : Array[double]
def apply(xs: unitx) : Array[unit]
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/#*+ Create an array containing several copies of an element. =*/
def make[A](n: Int, elem: A): Array[A] = {

/#*+ Enables pattern matching over arrays */
def unapplySeq[A](x: Array[A]): Option[Seq[A]] = Some(x)
}

Example 28.3.1 The following method duplicates a given argument array and re-
turns a pair consisting of the original and the duplicate:

def duplicate[T](xs: Array[T]) = {
val ys = new Array[T](xs.length)
Array.copy(xs, 0, ys, 0, xs.length)
(xs, ys)

}

28.4 Class Node

package scala.xml
trait Node {

/*# the label of this node =/
def label: String

/#*#% attribute axis */
def attribute: Map[String, String]

/#*+ child axis (all children of this node) =*/
def child: Seq[Node]

/#*# descendant axis (all descendants of this node) +*/
def descendant: Seq[Node] = child.toList.flatMap {
X => X::xX.descendant.asInstanceOf[List[Node]]

/#*# descendant axis (all descendants of this node) +*/
def descendant_or_self: Seq[Node] = this::child.tolList.flatMap {
X => X::X.descendant.asInstanceOf[List[Node]]

override def equals(x: Any): boolean = x match {
case that:Node =>
that.label == this.label &&
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that.attribute.sameElements(this.attribute) &&
that.child.sameElements(this.child)
case _ => false

/*% XPath style projection function. Returns all children of this node
# that are labeled with ’that’. The document order is preserved.
%/

def \(that: Symbol): NodeSeq = {
new NodeSeq({
that.name match {
case "_" => child.tolist
case _ =>
var res:List[Node] = Nil
for (x <- child.elements if x.label == that.name) {
res = X::res
3
res.reverse
}
B

/%% XPath style projection function. Returns all nodes labeled with the
# name ’that’ from the ’descendant_or_self’ axis. Document order is preserved.
%/
def \\(that: Symbol): NodeSeq = {
new NodeSeq(
that.name match {

case "_" => this.descendant_or_self
case _ => this.descendant_or_self.asInstanceOf[List[Node]].
filter(x => x.label == that.name)

b

/##% hashcode for this XML node =/
override def hashCode() =

Utility.hashCode(label, attribute.tolList.hashCode(), child)

/%% string representation of this node */
override def toString() = Utility.toXML(this)
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28.5 The Predef Object

The Predef object defines standard functions and type aliases for Scala programs.
It is always implicitly imported, so that all its defined members are available with-
out qualification. Its definition for the JVM environment conforms to the following
signature:

package scala
object Predef {

// classOf ———————m

/#*+* Return the runtime representation of a class type. =*/
def classOf[T]: Class = null // this is a dummy, classOf is handled by compiler.

// Standard type aliases ————————————

type byte = scala.Byte
type short = scala.Short
type char = scala.Char
type int = scala.Int
type long = scala.Long
type float = scala.Float
type double = scala.Double
type boolean = scala.Boolean
type unit = scala.Unit

type String = java.lang.String

type NullPointerException = java.lang.NullPointerException
type Throwable = java.lang.Throwable

type Function[-a,+b] = Functionl[a,b]

// Aliasses and extractors for tuples —--—-—-—-———————————————————

type Pair[+A, +B] = Tuple2[A, B]
object Pair {

def apply[A, B](x: A, y: B) = Tuple2(x, vy)

def unapply[A, B](x: Tuple2[A, B]): Option[Tuple2[A, B]] = Some(x)
}

type Triple[+A, +B, +C] = Tuple3[A, B, C]
object Triple {

def apply[A, B, C](x: A, y: B, z: C) = Tuple3(x, v, z)

def unapply[A, B, C](x: Tuple3[A, B, C]): Option[Tuple3[A, B, C]] = Some(x)
}
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// The ‘‘catch-all’’ view —————————————————————————— o —————
implicit def identity[A](x: A): A =
// Views into class Ordered

implicit def int2ordered(x: Int): Ordered[Int] = new Ordered[Int] with Proxy {
def self: Any =
def compare[B >: Int <% Ordered[B]](y: B): Int = y match {
case yl: Int =>
if (x <yl -1
else if (x > yl) 1
else 0
case _ => -(y compare X)
}
}

// The implementations of following methods are analogous to the last one:

implicit def char2ordered(x: Char): Ordered[Char]
implicit def long2ordered(x: Long): Ordered[Long] =

implicit def float2ordered(x: Float): Ordered[Float]
implicit def double2ordered(x: Double): Ordered[Double] =
implicit def boolean2ordered(x: Boolean): Ordered[Boolean] =

implicit def seq2ordered[A <% Ordered[A]](xs: Array[A]): Ordered[Seq[A]] =
new Ordered[Seq[A]] with Proxy {
def compare[B >: Seq[A] <% Ordered[B]](that: B): Int = that match {
case that: Seq[A] =>
var res = 0
val these = this.elements
val those = that.elements
while (res == 0 && these.hasNext)
res = if (!those.hasNext) 1 else these.next compare those.next
_ => - (that compare xs)

case

implicit def string2ordered(x: String): Ordered[String] =
new Ordered[String] with Proxy {
def self: Any =
def compare [b >: String <% Ordered[b]](y: b): int = y match {
case yl: String => x compare yl
case _ => —(y compare Xx)
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implicit def tuple2ordered[al <% Ordered[al], a2 <% Ordered[a2]]
(x: Tuple2[al, a2]): Ordered[Tuple2[al, a2]] =
new Ordered[Tuple2[al, a2]] with Proxy {
def self: Any = x
def compare[T >: Tuple2[al, a2] <% Ordered[T]](y: T): Int = y match {
case y: Tuple2[al, a2] =>
val res = x._1 compare y._1

if (res == 0) x._2 compare y._2
else res
case _ => —(y compare Xx)

// Analogous for Tuple3 to Tuple9
// Views into class Seq

implicit def string2seq(str: String): Seq[Char] = new Seq[Char] {
def length = str.length()
def elements = Iterator.fromString(str)
def apply(n: Int) = str.charAt(n)
override def hashCode(): Int = str.hashCode()
override def equals(y: Any): Boolean = (str == y)
override protected def stringPrefix: String = "String"

// Views from primitive types to Java’s boxed types

implicit def byte2Byte(x: Byte) = new java.lang.Byte(x)

implicit def short2Short(x: Short) = new java.lang.Short(x)
implicit def char2Character(x: Char) = new java.lang.Character(x)
implicit def int2Integer(x: Int) = new java.lang.Integer(x)
implicit def long2Long(x: Long) = new java.lang.Long(x)

implicit def float2Float(x: Float) = new java.lang.Float(x)
implicit def double2Double(x: Double) = new java.lang.Double(x)
implicit def boolean2Boolean(x: Boolean) = new java.lang.Boolean(x)

// Numeric conversion views

implicit def byte2short(x: Byte): Short = x.toShort
implicit def byte2int(x: Byte): Int = x.tolInt

implicit def byte2long(x: Byte): Long = x.tolong
implicit def byte2float(x: Byte): Float = x.toFloat
implicit def byte2double(x: Byte): Double = x.toDouble
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implicit def short2int(x: Short): Int = x.tolnt

implicit def short2long(x: Short): Long = x.toLong
implicit def short2float(x: Short): Float = x.toFloat
implicit def short2double(x: Short): Double = x.toDouble

implicit def char2int(x: Char): Int = x.tolInt

implicit def char2long(x: Char): Long = x.tolLong
implicit def char2float(x: Char): Float = x.toFloat
implicit def char2double(x: Char): Double = x.toDouble

implicit def int2long(x: Int): Long = x.toLong
implicit def int2float(x: Int): Float = x.toFloat
implicit def int2double(x: Int): Double = x.toDouble

implicit def long2float(x: long): Float = x.toFloat
implicit def long2double(x: long): Double = x.toDouble

implicit def float2double(x: Float): Double = x.toDouble

// Errors and asserts ——-——-——-————————————m

def error(message: String): Nothing = throw new Error(message)

def exit(): Nothing = exit(0)

def exit(status: Int): Nothing = {
java.lang.System.exit(status)
throw new Throwable()

}

def assert(assertion: Boolean): Unit =
if (!assertion)
throw new Error("assertion failed")

def assert(assertion: Boolean, message: Any): Unit =
if (!assertion)
throw new Error("assertion failed:

+ message)

def assume(assumption: Boolean): Unit =
if (lassumption)
throw new Error("assumption failed")

def assume(assumption: Boolean, message: Any): Unit =
if (!assumption)
throw new Error("assumption failed:

+ message)
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Chapter A

Scala Syntax Summary

The lexical syntax of Scala is given by the following grammar in EBNF form.

upper = ‘A | ... | ‘2| ‘$ | ‘_’ and Unicode Lu
lower = ‘a’ | ... | ‘2z’ and Unicode Ll
letter = upper | lower and Unicode categories Lo, Lt, NI
digit = ‘0" | ... 9
opchar = ‘“all other characters in\u0020-007F and Unicode categories
Sm, So except parentheses ([]) and periods”
op = opchar {opchar}
varid = lower idrest
plainid ::= upper idrest
|  varid
| op
id ::= plainid
|\’ stringLit ‘\*’
idrest i:= {letter | digit} [‘_’ op]
integerLiteral = (decimalNumeral | hexNumeral | octalNumeral) [’L’ | ’1’]
decimalNumeral = ‘0’ | nonZeroDigit {digit}
hexNumeral = ‘0’ ‘x’ hexDigit {hexDigit}
octalNumeral = ‘0’ octalDigit {octalDigit}
digit = ‘0’ | nonZeroDigit
nonZeroDigit = ‘17 | ... ] ‘9
octalDigit = ‘0| ... | ‘7
floatingPointLiteral
1:= digit {digit} ‘.’ {digit} [exponentPart] [floatType]
| “.” digit {digit} [exponentPart] [floatTypel]
| digit {digit} exponentPart [floatType]
| digit {digit} [exponentPart] floatType
exponentPart = (CE | ’e’) [’+" | ’-’] digit {digit}

floatType

IF! | !f! | 1D! | !d!
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booleanlLiteral = true | false
characterLiteral ::= ‘\’’ printableChar ‘\’’
| “\’’ charEscapeSeq ‘\’’
stringliteral = ‘"’ {stringElement} ‘"’
| [BIRIRI] multiLineChars crrrny
stringElement = printableCharNoDoubleQuote
| charEscapeSeq
multilineChars = {[’™’] [’"’] charNoDoubleQuote}
symbolLiteral ::= 77 plainid
comment 1:= ‘' /+’ ‘any sequence of characters” ‘+/’
| ‘//’ ‘any sequence of characters up to end of line”
nl = ‘“new line character”
semi i= 37 | nl {nl}

The context-free syntax of Scala is given by the following EBNF grammar.

Literal = integerLiteral

| floatingPointLiteral

| booleanLiteral

| characterlLiteral

| stringliteral

| symbolLiteral

| null
Qualld ii= did {‘.’ id}
ids = id {*‘,’ id}
Path = Stableld

| [id “.’] this
Stableld = id

| Path ‘.’ id

| [id ’.’] super [ClassQualifier] ‘.’ id
ClassQualifier = ‘[’ dd ‘1’
Type = InfixType [‘=>’ Type]

| “C [*=’ Typel] ‘)’ ‘=>’ Type
InfixType = CompoundType {id [nl] CompoundType}
CompoundType = AnnotType {with AnnotType} [Refinement]
AnnotType = {Annotation} SimpleType
SimpleType SimpleType TypeArgs

SimpleType ‘#’ id
Stableld
Path ‘.’ type
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TypeArgs
Types
Refinement
RefineStat

TypePat

CompoundTypePat

AnnotTypePat

SimpleTypePat
SimpleTypePatl

TypePatArgs
ArgTypePats
ArgTypePat

Ascription

Expr

Exprl

PostfixExpr
InfixExpr

PrefixExpr
SimpleExpr

SimpleExprl

‘(" Types [“,’] ’)’

‘[’ Types ‘]’

Type {‘,’ Type}

[n1] ‘{’ RefineStat {semi RefineStat} ‘}’
Dcl

type TypeDef

CompoundTypePat {id [nl] CompoundTypePat}
AnnotTypePat {with AnnotTypePat}
{Annotation} SimpleTypePat
SimpleTypePatl [TypePatArgs]
SimpleTypePatl ‘#’ id

Stableld

Path ‘.’ type

‘(’ ArgTypePats [‘,’] )’

‘[’ ArgTypePats ']’
ArgTypePat {‘,’ ArgTypePat}
varid

Type
“:’ CompoundType
:’ Annotation {Annotation}

[ R B |

(Bindings | id) ‘=>" Expr

Exprl

if ‘(C’ Expr ‘)’ {nl} Expr [[semi] else Expr]
while ‘(’ Expr ‘)’ {nl} Expr

try ‘{’ Block ‘}’ [catch ‘{’ CaseClauses ‘}’]
[finally Expr]

do Expr [semi] while ‘(’ Expr ’)’

for (‘(C’ Enumerators ‘)’ | ‘{’ Enumerators ‘}’)
{nl} [yield] Expr

throw Expr
return [Expr]
[SimpleExpr °
SimpleExprl ArgumentExprs
PostfixExpr Ascription
PostfixExpr match ‘{’ CaseClauses ‘}’
InfixExpr [id [nl]]

PrefixExpr

InfixExpr id [nl] InfixExpr

=" | “+7 | “~7 | “1I"] SimpleExpr
new ClassTemplate

BlockExpr

SimpleExprl [‘_’"]

Literal

.71 id ‘=’ Expr
‘=’ Expr
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Exprs
ArgumentExprs

BlockExpr

Block
BlockStat

Resul tExpr

Enumerators
Enumerator
Generator
CaseClauses
CaseClause
Guard
Pattern
Patternl
Pattern2

Pattern3

SimplePattern

Patterns

Path

‘¢’ [Exprs [,’]1]1 )’
SimpleExpr ‘.’ id
SimpleExpr TypeArgs
SimpleExprl ArgumentExprs
XmlExpr

Expr {‘,’ Expr}

‘C’ [Exprs [“,’11 )’
[n1] BlockExpr

“{’ CaseClauses ‘}’

‘{” Block ‘}’

{BlockStat semi} [ResultExpr]
Import

[implicit] Def
{LocalModifier} TmplDef
Exprl

Exprl

(Bindings | id ‘:’ CompoundType) ‘=>’ Block

Generator {semi Enumerator}
Generator

Guard

val Patternl ‘=’ Expr
Patternl ‘<-’ Expr [Guard]

CaseClause { CaseClause }
case Pattern [Guard] ‘=>’ Block
‘if’ PostfixExpr

Patternl { ‘|’ Patternl }

varid ‘:’ TypePat

‘.7 ‘7 TypePat

Pattern2

varid [ ‘@’ Pattern3]

Pattern3

SimplePattern

SimplePattern { id [nl] SimplePattern }

varid

Literal

Stableld

StableId ‘(’ [Patterns [‘,’]] )’
StableId ‘(’ [Patterns ‘,’] ‘_" ‘%’ ‘)’
‘(’ [Patterns [‘,’]1] )’

XmlPattern

Pattern [‘,’ Patterns]

(I B
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TypeParamClause

FunTypeParamClause: :

VariantTypeParam
TypeParam
ParamClauses
ParamClause
Params

Param

ParamType

ClassParamClauses ::

ClassParamClause
ClassParams
ClassParam

Bindings
Binding

Modifier

LocalModifier

AccessModifier
AccessQualifier

Annotation
AnnotationExpr
NameValuePair

TemplateBody

TemplateStat

Import
ImportExpr
ImportSelectors
ImportSelector

Dcl

‘[’ VariantTypeParam {‘,’ VariantTypeParam} ‘]’
‘[’ TypeParam {‘,’ TypeParam} ‘]’

[+’ | “=’] TypeParam

id [>: Type] [<: Type] [<% Type]

{ParamClause} [[nl] ‘(’ implicit Params ‘)’]

[n1] ‘¢’ [Params] ’)’}

Param {‘,’ Param}

{Annotation} id [‘:’ ParamType]
Type

‘=>’ Type

Type ‘=’

{ClassParamClause}

[[n1] “C’ dimplicit ClassParams ‘)’]
[n1] “(C’ [ClassParams] ’)’
ClassParam {‘’ ClassParam}
{Annotation} [{Modifier} (‘val’ |
id [“:’ ParamTypel]

“(’ Binding {‘,’ Binding ‘)’

id [‘:’ Typel

‘var’)]

LocalModifier

AcessModifier

override

abstract

final

sealed

implicit

(private | protected) [AccessQualifier]
‘[’ (dd | this) ‘]’

‘@’ AnnotationExpr [nl]
Constr [[nl] “{’ {NameValuePair} ‘}’]
val id ‘=’ PrefixExpr

[nl] “{’ [id [*:’ Type]l ‘=>’]
TemplateStat {semi TemplateStat} ‘}’
Import

{Annotation} {Modifier} Def
{Annotation} {Modifier} Dcl

Expr

import ImportExpr {‘,’ ImportExpr}
StableId ‘.’ (id | ‘_’ | ImportSelectors)
‘{’ {ImportSelector ‘,’} (ImportSelector |
id [‘=7 dd | ‘=" ‘_’]

val ValDcl

i_!) 5}7



302 Scala Syntax Summary

| wvar VarDcl
| def FunDcl
| type {nl} TypeDcl

ValDcl 1= ids ‘:’ Type
VarDcl r:= ids ‘:’ Type
FunDcl ::= FunSig [‘:’ Type]
FunSig ::= 1id [FunTypeParamClause] ParamClauses
TypeDcl = did [“>:’ Type] [‘<:’ Type]
Def ::= val PatDef

| wvar VarDef

| def FunDef

|  type {nl} TypeDef

| TmplDef
PatDef ::= Pattern2 {‘,’ Pattern2} [‘:’ Type] ‘=’ Expr
VarDef ::= ids [‘:’ Type] ‘=’ Expr

| dids ‘:’ Type ‘=" ‘_’
FunDef ::= FunSig ‘:’ Type ‘=’ Expr

| FunSig [nl] ‘{’ Block ‘}’

| this ParamClause ParamClauses

(‘=" ConstrExpr | [nl] ConstrBlock)

TypeDef = 1id [TypeParamClause] ‘=’ Type
TmplDef = [case] class ClassDef

| [case] object ObjectDef

|  trait TraitDef
ClassDef = id [TypeParamClause] {Annotation} [AccessModifier]

ClassParamClauses [requires AnnotType] ClassTemplateOpt

TraitDef = id [TypeParamClause] [requires AnnotType] TraitTemplateOpt
ObjectDef = 1id ClassTemplateOpt
ClassTemplateOpt = extends ClassTemplate | [[extends] TemplateBody]
TraitTemplateOpt = extends TraitTemplate | [[extends] TemplateBody]
ClassTemplate = [EarlyDefs] ClassParents [TemplateBody]
TraitTemplate = [EarlyDefs] TraitParents [TemplateBody]
ClassParents = Constr {with AnnotType}
TraitParents = AnnotType {with AnnotType}
Constr = AnnotType {ArgumentExprs}
EarlyDefs = “{’ [EarlyDef {semi EarlyDef}] ‘}’ with
EarlyDef = Annotations Modifiers PatDef
ConstrExpr = SelfInvocation

| ConstrBlock
ConstrBlock = ‘{’ SelfInvocation {semi BlockStat} ‘}’
SelfInvocation = this ArgumentExprs {ArgumentExprs}
TopStatSeq = TopStat {semi TopStat}
TopStat = {Annotation} {Modifier} TmplDef

| Import
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Packaging

Packaging package Qualld [nl] ‘{’ TopStatSeq ‘}’

CompilationUnit [package QualIld semi] TopStatSeq






Chapter B
Change Log

Changes in Version 2.5.0

Type constructor polymorphism!
Type parameters (§20.4) and abstract type members (§20.3) can now also abstract
over type constructors (§19.3.3).

This allows a more precise Iterable interface:

trait Iterable[+T] {
type MyType[+T] <: Iterable[T] // MyType is a type constructor

def filter(p: T => Boolean): MyType[T] = ...
def map[S](f: T => S): MyType[S] = ...
}

abstract class List[+T] extends Iterable[T] {
type MyType[+T] = List[T]
}

This definition of Iterable makes explicit that mapping a function over a certain
structure (e.g., a List) will yield the same structure (containing different elements).
Early object initialization

Itis now possible to initialize some fields of an object before any parent constructors
are called (§21.1.6). This is particularly useful for traits, which do not have normal
constructor parameters. Example:

trait Greeting {

'Implemented by Adriaan Moors
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val name: String
val msg = "How are you, "+name
}
class C extends {
val name = "Bob"
} with Greeting {
println(msg)
}

In the code above, the field name is initialized before the constructor of Greeting
is called. Therefore, field msg in class Greeting is properly initialized to
"How are you, Bob".

For-comprehensions, revised

The syntax of for-comprehensions has changed (§22.18). In the new syntax, gen-
erators do not start with a val anymore, but filters start with an if (and are called
guards). A semicolon in front of a guard is optional. For example:

for (val x <- List(1, 2, 3); x % 2 == 0) println(x)

is now written

for (x <- List(1, 2, 3) if x % 2 == 0) println(x)

The old syntax is still available but will be deprecated in the future.

Implicit anonymous functions

It is now possible to define anonymous functions using underscores in parameter
position (§SExample 22.22.1). For instance, the expressions in the left column are
each function values which expand to the anonymous functions on their right.

_+1 X =>Xx+1

_ox (x1, x2) => x1 * x2

(_: int) = 2 (x: int) => (x: int) = 2
if (L) x elsey z => if (z) x else y
_.map(f) x => x.map(f)

_.map(_ + 1) X => x.map(y => vy + 1)

As a special case (§22.6), a partially unapplied method is now designated m _ in-
stead of the previous notation &m.

The new notation will displace the special syntax forms .m() for abstracting over
method receivers and &m for treating an unapplied method as a function value. For
the time being, the old syntax forms are still available, but they will be deprecated
in the future.
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Pattern matching anonymous functions, refined

It is now possible to use case clauses to define a function value directly for functions
of arities greater than one (§24.5). Previously, only unary functions could be defined
that way. Example:

def scalarProduct(xs: Array[Double], ys: Array[Double]) =
(0.0 /: (xs zip vys)) {
case (a, (b, ¢)) = a +b = ¢

}

Changes in Version 2.4.0

Object-local private and protected

The private and protected modifiers now accept a [this] qualifier (§21.2). A defi-
nition M which islabelled private[this] is private, and in addition can be accessed
only from within the current object. That is, the only legal prefixes for M are this
or C.this. Analogously, a definition M which is labelled protected[this] is pro-
tected, and in addition can be accessed only from within the current object.

Tuples, revised
The syntax for tuples has been changed from {...} to (...) (§22.8). For any sequence
of types Ty, ..., Ty,
(Ty,..., T,) isashorthand for Tuplen[Ty,..., T,].
Analogously, for any sequence of expressions or patterns xj, ..., Xp,

(x1,..., X,) isashorthand for Tuplen(xi,..., X;).

Access modifiers for primary constructors

The primary constructor of a class can now be marked private or protected
(§21.3). If such an access modifier is given, it comes between the name of the class
and its value parameters. Example:

class C[T] private (x: T) { ... }

Annotations

The support for attributes has been extended and its syntax changed (§27). At-
tributes are now called annotations. The syntax has been changed to follow Java’s
conventions, e.g. @attribute instead of [attribute]. The old syntax is still avail-
able but will be deprecated in the future.
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Annotations are now serialized so that they can be read by compile-time or run-
time tools. Class scala.Annotation has two sub-traits which are used to indicate
how annotations are retained. Instances of an annotation class inheriting from trait
scala.ClassfileAnnotation will be stored in the generated class files. Instances
of an annotation class inheriting from trait scala.StaticAnnotation will be visible
to the Scala type-checker in every compilation unit where the annotated symbol is
accessed.

Decidable subtyping

The implementation of subtyping has been changed to prevent infinite recursions.
Termination of subtyping is now ensured by a new restriction of class graphs to be
finitary (§21.1.5).

Case classes cannot be abstract

It is now explicitly ruled out that case classes can be abstract (§21.2). The specifi-
cation was silent on this point before, but did not explain how abstract case classes
were treated. The Scala compiler allowed the idiom.

New syntax for self aliases and self types

It is now possible to give an explicit alias name and/or type for the self reference
this (§21.1). For instance, in

class C { self: D =

the name self is introduced as an alias for this within C and the self type (§21.3) of
Cis assumed to be D. This construct is introduced now in order to replace eventually
both the qualified this construct C. this and the requires clause in Scala.

Assignment Operators

It is now possible to combine operators with assignments (§22.11.4). Example:

var x: int = 0
X +=1
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Changes in Version 2.3.2 (23-Jan-2007)

Extractors

It is now possible to define patterns independently of case classes, using unapply
methods in extractor objects (§24.1.7). Here is an example:

object Twice {
def apply(x:Int): int = x*2
def unapply(z:Int): Option[int] = if (z%2==0) Some(z/2) else None
}
val x = Twice(21)
x match { case Twice(n) => Console.println(n) } // prints 21

In the example, Twice is an extractor object with two methods:

¢ The apply method is used to build even numbers.

* The unapply method is used to decompose an even number; it is in a sense
the reverse of apply. unapply methods return option types: Some(...) for a
match that suceeds, None for a match that fails. Pattern variables are returned
as the elements of Some. If there are several variables, they are grouped in a
tuple.

In the second-to-last line, Twice’s apply method is used to construct a number x.
In the last line, x is tested against the pattern Twice(n). This pattern succeeds for
even numbers and assigns to the variable n one half of the number that was tested.
The pattern match makes use of the unapply method of object Twice. More details
on extractors can be found in the paper “Matching Objects with Patterns” by Emir,
Odersky and Williams.

Tuples
A new lightweight syntax for tuples has been introduced (§22.8). For any sequence
of types 11, ..., Ty,
{Th,..., Ty} isashorthand for Tuplen[Ty,..., T,].
Analogously, for any sequence of expressions or patterns xi, ..., Xy,

{x1,..., x,} isashorthand for Tuplen(x,..., x,).

Infix operators of greater arities

It is now possible to use methods which have more than one parameter as infix
operators (§22.11). In this case, all method arguments are written as a normal pa-
rameter list in parentheses. Example:
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class C {
def +(x: int, y: String) = ...
}

val ¢ = new C
c + (1, "abc")

Deprecated attribute

A new standard attribute deprecated is available (§27). If a member definition is
marked with this attribute, any reference to the member will cause a “deprecated”
warning message to be emitted.

Changes in Version 2.3.0 (23-Nov-2006)

Procedures

A simplified syntax for functions returning unit has been introduced (§20.6.3).
Scala now allows the following shorthands:

def f(params) for def f(params): unit
def f(params) { ... } for def f(params): unit = { ... }

Type Patterns

The syntax of types in patterns has been refined (§24.2). Scala now distinguishes be-
tween type variables (starting with a lower case letter) and types as type arguments
in patterns. Type variables are bound in the pattern. Other type arguments are,
as in previous versions, erased. The Scala compiler will now issue an “unchecked”
warning at places where type erasure might compromise type-safety.

Standard Types

The recommended names for the two bottom classes in Scala’s type hierarchy have
changed as follows:

All ==> Nothing
AllRef == Null

The old names are still available as type aliases.
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Changes in Version 2.1.8 (23-Aug-2006)

Visibility Qualifier for protected

Protected members can now have a visibility qualifier (§21.2), e.g.
protected[<qualifier>]. In particular, one can now simulate package protected
access as in Java writing

protected[P] def X ...

where P would name the package containing X.

Relaxation of Private Acess

Private members of a class can now be referenced from the companion module of
the class and vice versa (§21.2)

Implicit Lookup

The lookup method for implicit definitions has been generalized (§23.2). When
searching for an implicit definition matching a type T, now are considered

1. all identifiers accessible without prefix, and

2. all members of companion modules of classes associated with T.
(The second clause is more general than before). Here, a class is associated with a

type T if it is referenced by some part of T, or if it is a base class of some part of T.
For instance, to find implicit members corresponding to the type

HashSet[List[Int], String]

one would now look in the companion modules (aka static parts) of HashSet, List,
Int, and String. Before, it was just the static part of HashSet.

Tightened Pattern Match

A typed pattern match with a singleton type p.type now tests whether the selector
value is reference-equal to p (§24.1). Example:

val p = List(1, 2, 3)
val q = List(1, 2)
valr = g

r match {

case _: p.type => Console.println("p")

case _: q.type => Console.println("q")
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This will match the second case and hence will print "q". Before, the singleton types
were erased to List, and therefore the first case would have matched, which is non-
sensical.

Changes in Version 2.1.7 (19-Jul-2006)

Multi-Line string literals

It is now possible to write multi-line string-literals enclosed in triple quotes
(§17.3.5). Example:

this is a
multi-line
string literal"""

No escape substitutions except for unicode escapes are performed in such string
literals.
Closure Syntax

The syntax of closures has been slightly restricted (§22.22). The form

x: T =E

is valid only when enclosed in braces, i.e. { x: T => E }. The following is illegal,
because it might be read as the value x typed with the type T => E:

val f = x: T = E

Legal alternatives are:

val f = { x: T=E}
val f = (x: T) => E

Changes in Version 2.1.5 (24-May-2006)

Class Literals

There is a new syntax for class literals (§22.1): For any class type C, classOf[C]
designates the run-time representation of C.
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Changes in Version 2.0 (12-Mar-2006)

Scala in its second version is different in some details from the first version of the
language. There have been several additions and some old idioms are no longer
supported. This appendix summarizes the main changes.

New Keywords

The following three words are now reserved; they cannot be used as identifiers
(§17.1)

implicit match requires

Newlines as Statement Separators

Newlines can now be used as statement separators in place of semicolons (§17.2)

Syntax Restrictions

There are some other situations where old constructs no longer work:

Pattern matching expressions. The match keyword now appears only as infix op-
erator between a selector expression and a number of cases, as in:

expr match {
case Some(x) => ...
case None => ...

Variants such as expr.match {...} or just match {...} are no longer sup-
ported.

“With” in extends clauses. . The idiom

class Cwith M { ... }

is no longer supported. A with connective is only allowed following an extends
clause. For instance, the line above would have to be written

class C extends AnyRef with M { ... } .

However, assuming M is a trait (see 21.3.3), it is also legal to write

class C extends M { ... }

The latter expression is treated as equivalent to
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class C extends S with M { ... }
where S is the superclass of M.
Regular Expression Patterns. The only form of regular expression pattern that is

currently supported is a sequence pattern, which might end in a sequence wildcard
_*. Example:

case List(1, 2, _*) => ... // will match all 1lists starting with \code{1,2}.

It is at current not clear whether this is a permanent restriction. We are evaluating
the possibility of re-introducing full regular expression patterns in Scala.

Selftype Annotations

The recommended syntax of selftype annotations has changed.

class C: T extends B { ... }
becomes
class C requires T extends B { ... }

That is, selftypes are now indicated by the new requires keyword. The old syntax is
still available but is considered deprecated. Conversions

For-comprehensions

For-comprehensions (§22.18) now admit value and pattern definitions. Example:

for {
val x <- List.range(1l, 100)
val y <- List.range(1l, x)
val z = x + Yy
isPrime(z)

} yield Pair(x, vy)

Note the definition val z = x + y as the third item in the for-comprehension.

Conversions

The rules for implicit conversions of methods to functions (§22.24) have been tight-
ened. Previously, a parameterized method used as a value was always implicitly
converted to a function. This could lead to unexpected results when method argu-
ments where forgotten. Consider for instance the statement below:

show(x.toString)
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where show is defined as follows:

def show(x: String) = Console.println(x) .

Most likely, the programmer forgot to supply an empty argument list () to toString.
The previous Scala version would treat this code as a partially applied method, and
expand it to:

show(() => x.toString())

As aresult, the address of a closure would be printed instead of the value of s.

Scala version 2.0 will apply a conversion from partially applied method to function
value only if the expected type of the expression is indeed a function type. For in-
stance, the conversion would not be applied in the code above because the expected
type of show’s parameter is String, not a function type.

The new convention disallows some previously legal code. Example:

def sum(f: int => double)(a: int, b: int): double =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

val sumInts = sum(x => x) // error: missing arguments

The partial application of sum in the last line of the code above will not be converted
to a function type. Instead, the compiler will produce an error message which states
that arguments for method sum are missing. The problem can be fixed by providing
an expected type for the partial application, for instance by annotating the defini-
tion of sumInts with its type:

val sumInts: (int, int) => double = sum(x => x) // OK

On the other hand, Scala version 2.0 now automatically applies methods with empty
parameter lists to () argument lists when necessary. For instance, the show expres-
sion above will now be expanded to

show(x.toString()) .

Scala version 2.0 also relaxes the rules of overriding with respect to empty parameter
lists. The revised definition of matching members (§21.1.3) makes it now possible to
override a method with an explicit, but empty parameter list () with a parameterless
method, and vice versa. For instance, the following class definition is now legal:

class C {
override def toString: String = ...

}

Previously this definition would have been rejected, because the toString method
as inherited from java.lang.Object takes an empty parameter list.
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Class Parameters

A class parameter may now be prefixed by val or var (§21.3).

Private Qualifiers

Previously, Scala had three levels of visibility: private, protected and public. There
was no way to restrict accesses to members of the current package, as in Java. Scala
2 now defines access qualifiers that let one express this level of visibility, among
others. In the definition

private[C] def f(...)

access to f is restricted to all code within the class or package C (which must contain
the definition of f) (§21.2)

Changes in the Mixin Model

The model which details mixin composition of classes has changed significantly.
The main differences are:

1. We now distinguish between traits that are used as mixin classes and normal
classes. The syntax of traits has been generalized from version 1.0, in that
traits are now allowed to have mutable fields. However, as in version 1.0, traits
may still do not have constructor parameters.

2. Member resolution and super accesses are now both defined in terms of a
class linearization.

3. Scala’s notion of method overloading has been generalized; in particular, it is
now possible to have overloaded variants of the same method in a subclass
and in a superclass, or in several different mixins. This makes method over-
loading in Scala conceptually the same as in Java.

The new mixin model is explained in more detail in §21.

Implicit Parameters

Views in Scala 1.0 have been replaced by the more general concept of implicit pa-
rameters (§23)

Flexible Typing of Pattern Matching

The new version of Scala implements more flexible typing rules when it comes to
pattern matching over heterogeneous class hierarchies (§24.4). A heterogeneous
class hierarchy is one where subclasses inherit a common superclass with differ-
ent parameter types. With the new rules in Scala version 2.0 one can perform pat-
tern matches over such hierarchies with more precise typings that keep track of the
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information gained by comparing the types of a selector and a matching pattern
(SExample 24.4.1). This gives Scala capabilities analogous to guarded algebraic data

types.
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