
Arduino Ethernet + SD Card
Created by Anne Barela

https://learn.adafruit.com/arduino-ethernet-sd-card

Last updated on 2025-05-21 02:42:47 PM EDT

©Adafruit Industries Page 1 of 17

3

4

5

8

10

15

Table of Contents

Overview

SD Card Preparation

Reading SD Card Information

Listing Files

Serving Files over Ethernet
• Community Fork

How it Works and Wrap-up
• Wrap-Up

©Adafruit Industries Page 2 of 17

Overview

This tutorial provides the basics for using a WIZ5500-based Ethernet Shield with an
Arduino compatible. The Wiznet WIZ5500 is a modern Ethernet interface chip and is
used in the Ethernet Shield W5500 (http://adafru.it/2971) and the Feather Ethernet
Wing (http://adafru.it/3201) available at Adafruit.

The shield form factor works well for ATmega328 based Arduino compatibles like the
Arduino Uno R3 and the Adafruit Metro 328 (http://adafru.it/2488) (Classic). The shield
contains both an Ethernet connection for networks and an SD Card slot for storing
data.

The Feather wing works well with a Feather with a SD card slot. The Feather 32u4
Adalogger (http://adafru.it/2795) has an Arduino Leonardo compatible 32u4 processor
and a micro-SD card slot. With the Ethernet Feather Wing, it provides the same
functionality as the Ethernet Shield+Metro/Uno in a much smaller package. SD and
micro-SD are the same for all purposes but the latter is smaller. In this tutorial, when it
says do something to an SD card and you are using the Feathers, think micro-SD.

This tutorial assumes you already know the basics of the Arduino IDE, code
generation and the Arduino interface. If you are not so familiar with the Arduino IDE,
you might check the tutorials in the Adafruit Learn Arduino Series (https://adafru.it/
BQZ).

As of the date of this revised tutorial, Arduino notes their Ethernet Shields are
retired (https://adafru.it/BQ-). If you use a retired or third-party Ethernet shield, you
may have to use a different Arduino library that supports the chipset the board uses.

©Adafruit Industries Page 3 of 17

https://www.adafruit.com/product/2971
https://www.adafruit.com/product/3201
https://www.adafruit.com/product/3201
https://www.adafruit.com/product/2488
https://www.adafruit.com/product/2795
https://www.adafruit.com/product/2795
file:///home/deploy/category/learn-arduino
https://store.arduino.cc/usa/catalogsearch/result/?ie=UTF-8&oe=UTF-8&q=Ethernet+shield&domains=&sitesearch=
https://store.arduino.cc/usa/catalogsearch/result/?ie=UTF-8&oe=UTF-8&q=Ethernet+shield&domains=&sitesearch=

Note that the Ethernet Shield and Feather Wing Adafruit uses is based on the
WIZ5500 chip, not the older WIZ5100 chipset or others. The WIZ5500 requires the
Ethernet2 library, not the older Ethernet library on Arduino. If you use the older
hardware, just be sure you change libraries back from Ethernet2 to Ethernet and
double check things.

This tutorial will go through preparing then using the SD card, both in general then
reading the files on a card. The final example will show how to access the SD card
remotely over Ethernet. This capability could be the basis for a remote file storage or
other program that access a remote Arduino compatible.

SD Card Preparation

Ensure you use a computer to pre-format your SD card as FAT16. FAT16 was
introduced by Microsoft a long time ago but it is simple and microcontrollers like
simple. Many formatting programs support FAT16. Windows supports FAT16 natively
with the format command and in the File Explorer.

It is suggested that you use the sdcard.org SD Memory Card Formatter app. It is
available for PC and Mac.

WARNING: DO NOT FORMAT YOUR HARD DISK(S) TRYING TO FORMAT YOUR
SD CARD.

©Adafruit Industries Page 4 of 17

SD Card Formatter for SD/SDHC/
SDXC

https://adafru.it/B2q

Here is a shot of SD Card Formatter with a card inserted.

Reading SD Card Information
The program below is a slightly modified version of the Arduino example SdFatInfo
program. The main change is to define the SPI select of the WIZ5500 Ethernet chip
and set it high (unselected) so the sketch can talk to the SD card only.

For the Ethernet shield, put your formatted SD card into the SD card slot (top side up,
don't force it, gentle). Put your shield on your Arduino-compatible board. Power the
boards with a suitable power supply recommended for the Arduino. Connect the
microcontroller board to your computer with a suitable USB cable.

For the Feathers, place the formatted micro-SD card into the micro-SD card slot in the
Adalogger Feather. Plug the board into a USB port on your computer.

©Adafruit Industries Page 5 of 17

https://www.sdcard.org/downloads/formatter_4/index.html

Using the Arduino IDE software and select the correct type of Arduino-compatible
board and the serial port for the board in the Tools menu. You may have to push the
reset button for the operating system to see the serial port. Load the following sketch,
compile, and run.

The information about the SD card should be displayed on the serial monitor in the
IDE.

// SPDX-FileCopyrightText: 2011 Limor Fried for Adafruit Industries
// SPDX-FileCopyrightText: 2012 Tom Igoe
// SPDX-FileCopyrightText: 2018 Anne Barela for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/*
 SD card test for WIZ5500 Compatible Ethernet Boards

 This example shows how use the utility libraries on which the'
 SD library is based in order to get info about your SD card.
 Very useful for testing a card when you're not sure whether its working or not.

 The circuit:
 * SD card attached to SPI bus as follows:
 ** MOSI - pin 11 on Arduino Uno and Adafruit Metro
 ** MISO - pin 12 on Arduino Uno and Adafruit Metro
 ** CLK - pin 13 on Arduino Uno and Adafruit Metro
 ** CS - depends on your SD card shield or module (see below)

 created 28 Mar 2011 by Limor Fried
 modified 9 Apr 2012 by Tom Igoe
 modified 12 Apr 2018 by Anne Barela
 */
// include the SD library:
#include <SPI.h>
#include <SD.h>

// set up variables using the SD utility library functions:
Sd2Card card;
SdVolume volume;
SdFile root;

// change this to match your SD shield or module;
// Arduino Ethernet shield: pin 4
// Adafruit #2971 W5500 by Seeed Studio: Pin 4
// Sparkfun SD shield: pin 8
// Arduino Mega: Pin 53
// MKRZero SD: SDCARD_SS_PIN
const int chipSelect = 4;
//
// Chip Select for W5500 Ethernet (must be set as output in initialization)
const int W5500_SS = 10;

void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {

; // wait for serial port to connect. Needed for native USB port only
}

Serial.print("\nInitializing SD card...");

// we'll use the initialization code from the utility libraries
// since we're just testing if the card is working!
pinMode(W5500_SS, OUTPUT); // set the Ethernet SS pin as an output

©Adafruit Industries Page 6 of 17

(necessary!)
digitalWrite(W5500_SS, HIGH); // but turn off the W5500 chip for now
if (!card.init(SPI_HALF_SPEED, chipSelect)) {

Serial.println("initialization failed. Things to check:");
Serial.println("* is a card inserted?");
Serial.println("* is your wiring correct?");
Serial.println("* did you change the chipSelect pin to match your shield or

module?");
return;

} else {
Serial.println("Wiring is correct and a card is present.");

}

// print the type of card
Serial.print("\nCard type: ");
switch (card.type()) {

case SD_CARD_TYPE_SD1:
Serial.println("SD1");
break;

case SD_CARD_TYPE_SD2:
Serial.println("SD2");
break;

case SD_CARD_TYPE_SDHC:
Serial.println("SDHC");
break;

default:
Serial.println("Unknown");

}

// Now we will try to open the 'volume'/'partition' - it should be FAT16 or FAT32
if (!volume.init(card)) {

Serial.println("Could not find FAT16/FAT32 partition.\nMake sure you've
formatted the card");

return;
}

// print the type and size of the first FAT-type volume
uint32_t volumesize;
Serial.print("\nVolume type is FAT");
Serial.println(volume.fatType(), DEC);
Serial.println();

volumesize = volume.blocksPerCluster(); // clusters are collections of blocks
volumesize *= volume.clusterCount(); // we'll have a lot of clusters
volumesize *= 512; // SD card blocks are always 512 bytes
Serial.print("Volume size (bytes): ");
Serial.println(volumesize);
Serial.print("Volume size (Kbytes): ");
volumesize /= 1024;
Serial.println(volumesize);
Serial.print("Volume size (Mbytes): ");
volumesize /= 1024;
Serial.println(volumesize);

Serial.println("\nFiles found on the card (name, date and size in bytes): ");
root.openRoot(volume);

// list all files in the card with date and size
root.ls(LS_R | LS_DATE | LS_SIZE);

}

void loop(void) {
}

The serial monitor output below is for a micro-SD card formatted in Windows 10 for
FAT. It is set for 60MB (it doesn't fill the card, it was an old Raspberry Pi Zero system

©Adafruit Industries Page 7 of 17

card). It has several text files and a directory with a couple of files in it. Your Arduino
Serial Monitor should display something similar.

Listing Files
Once you are reliably reading SD card information, you can move on to looking at
what files might be on the SD card. The code below is the Arduino SD Card Example
Listfiles. It is modified to put the WIZ5500 chip select high so the SPI bus is only
talking to the SD card.

At this point, please place a few files on the SD card from your computer to get an
interesting output rather than using a blank card. It is suggested to put two or three
text files with the filenames being no more than 8 characters before the period then
end in .txt. An example would be README.txt or todo.txt. You can put the code text
files on the card also, having them end in .ino will be fine also.

// SPDX-FileCopyrightText: 2010 David A. Mellis
// SPDX-FileCopyrightText: 2012 Tom Igoe
// SPDX-FileCopyrightText: 2014 Scott Fitzgerald
// SPDX-FileCopyrightText: 2018 Anne Barela for Adafruit Industries
//
// SPDX-License-Identifier: Unlicense

/* SDlistFiles

 This example shows how print out the files in a directory on a SD card

 The circuit:
 * SD card attached to SPI bus as follows:

©Adafruit Industries Page 8 of 17

 ** MOSI - pin 11
 ** MISO - pin 12
 ** CLK - pin 13
 ** CS - pin 4 Adafruit #2971 and Metro/Uno

 created Nov 2010 by David A. Mellis
 modified 9 Apr 2012 by Tom Igoe
 modified 2 Feb 2014 by Scott Fitzgerald
 modified 12 Apr 2018 by Anne Barela

 This example code is in the public domain.

 */
#include <SPI.h>
#include <SD.h>

File root;

void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {

; // wait for serial port to connect. Needed for native USB port only
}

pinMode(10, OUTPUT); // set the SS pin as an output (necessary!)
digitalWrite(10, HIGH); // but turn off the W5100 chip

Serial.print("Initializing SD card...");

if (!SD.begin(4)) {
Serial.println("initialization failed!");
return;

}
Serial.println("initialization done.");

root = SD.open("/");

printDirectory(root, 0);

Serial.println("done!");
}

void loop() {
// nothing happens after setup finishes.

}

void printDirectory(File dir, int numTabs) {
while (true) {

File entry = dir.openNextFile();
if (! entry) {

// no more files
break;

}
for (uint8_t i = 0; i < numTabs; i++) {

Serial.print('\t');
}
Serial.print(entry.name());
if (entry.isDirectory()) {

Serial.println("/");
printDirectory(entry, numTabs + 1);

} else {
// files have sizes, directories do not
Serial.print("\t\t");
Serial.println(entry.size(), DEC);

}
entry.close();

©Adafruit Industries Page 9 of 17

}
}

The screen shot below shows information on the same card as in the last sketch but
lists the files and their sizes.

Note in Windows, filenames like WPSETT~1.DAT refer to a longer filename (such as
WPSETTINGS.DAT). Microsoft, for compatibility with older software, truncates
filenames greater than 8 characters (not including the 3 character file extension) at 6
characters, a tilde (~) character, and a number (in case multiple truncated files exist).
The older software cat read and write to the file the same as an 8.3 character file.

The extra information for the long file name is hidden from older software but
perfectly safe for newer software. There are no worries opening the shortened
filename will somehow corrupt the capability to use the long filenames as long as
using the file name per the name you see (and not changing the file name) is
observed.

Serving Files over Ethernet
Now that all the SD card functionality appears to be working, the program below
allows you to view the files on an SD card over the Ethernet interface and download
any file you wish.

The program will provide a directory listing of the SD card to a web page. If a
directory is clicked, the web page will show the contents of the subdirectory. If a file is
clicked, the file will be sent to your computer. If you want to go back up the directory
tree, use the browser back button.

©Adafruit Industries Page 10 of 17

The library which provides the WIZ5500 Ethernet functionality is called Ethernet2.
The Adafruit version of Ethernet2 has been maintained and should be used instead of
the Ethernet2 library available in the Arduino Library Manager. You can get the library
code on GitHub at https://github.com/adafruit/Ethernet2 (https://adafru.it/plf).

It is suggested that you put the Ethernet2 code from the Adafruit GitHub repository
into your Arduino sketch folder, in the libraries subdirectory, in a subdirectory called
Ethernet2.

For the source code below, you should review the following in the code:

Byte array mac[] is set to a generic MAC address - if you have another
device on your home network with the same address, change things a bit. Each
value is an 8 bit value in hexadecimal (from 00 to FF).
Byte array ip[] is the Internet Protocol (IP) address of an unused device on
your home network. Having the Ethernet board way up at 177 (decimal) is fairly
safe - if you know networking and this will not work, if you have your network on
a network other than 192.168.1.xxx (say at 192.168.0.xxx or 10.0.0.xxx) change
those also. You can find information like this from your Internet router.
If you want to use DHCP to get an address from your router, uncomment the
version of the Ethernet.begin call with only the mac address. It may be more
difficult to get the address and the address might change is the router gives out
a new address. So the default is a fixed address.

// SPDX-FileCopyrightText: 2018 Anne Barela for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/*
 * SDWebBrowse.ino
 *
 * This sketch uses the microSD card slot on the a WIZ5500 Ethernet shield
 * to serve up files over a very minimal browsing interface
 *
 * Some code is from Bill Greiman's SdFatLib examples, some is from the
 * Arduino Ethernet WebServer example and the rest is from Limor Fried
 * (Adafruit) so its probably under GPL
 *
 * Tutorial is at https://learn.adafruit.com/arduino-ethernet-sd-card/serving-files-
over-ethernet
 *
 */

#include <SPI.h>
#include <SD.h>
#include <Ethernet.h>

/************ ETHERNET STUFF ************/
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // change if necessary
byte ip[] = { 192, 168, 1, 177 }; // change if necessary
EthernetServer server(80);

/************ SDCARD STUFF ************/
#define SDCARD_CS 4

•

•

•

©Adafruit Industries Page 11 of 17

https://github.com/adafruit/Ethernet2

File root;

#if defined(ESP8266)
// default for ESPressif
#define WIZ_CS 15

#elif defined(ESP32)
#define WIZ_CS 33

#elif defined(ARDUINO_STM32_FEATHER)
// default for WICED
#define WIZ_CS PB4

#elif defined(TEENSYDUINO)
#define WIZ_CS 10

#elif defined(ARDUINO_FEATHER52)
#define WIZ_CS 11

#else // default for 328p, 32u4 and m0
#define WIZ_CS 10

#endif

// store error strings in flash to save RAM
#define error(s) error_P(PSTR(s))

void error_P(const char* str) {
Serial.print(F("error: "));
Serial.println(str);

while(1);
}

void setup() {
Serial.begin(115200);
while (!Serial); // For 32u4 based microcontrollers like 32u4 Adalogger

Feather

//Serial.print(F("Free RAM: ")); Serial.println(FreeRam());

if (!SD.begin(SDCARD_CS)) {
error("card.init failed!");

}

root = SD.open("/");
printDirectory(root, 0);

// Recursive list of all directories
Serial.println(F("Files found in all dirs:"));
printDirectory(root, 0);

Serial.println();
Serial.println(F("Done"));

// Debugging complete, we start the server!
Serial.println(F("Initializing WizNet"));
Ethernet.init(WIZ_CS);
// give the ethernet module time to boot up
delay(1000);
// start the Ethernet connection
// Use the fixed IP specified. If you want to use DHCP first
// then switch the Ethernet.begin statements
Ethernet.begin(mac, ip);
// try to congifure using DHCP address instead of IP:
// Ethernet.begin(mac);

// print the Ethernet board/shield's IP address to Serial monitor
Serial.print(F("My IP address: "));
Serial.println(Ethernet.localIP());

server.begin();
}

void ListFiles(EthernetClient client, uint8_t flags, File dir) {

©Adafruit Industries Page 12 of 17

client.println("");
while (true) {

File entry = dir.openNextFile();

// done if past last used entry
if (! entry) {

// no more files
break;

}

// print any indent spaces
client.print("<a href=\"");
client.print(entry.name());
if (entry.isDirectory()) {

client.println("/");
}
client.print("\">");

// print file name with possible blank fill
client.print(entry.name());
if (entry.isDirectory()) {

client.println("/");
}

client.print("");
/*
 // print modify date/time if requested
 if (flags & LS_DATE) {
 dir.printFatDate(p.lastWriteDate);
 client.print(' ');
 dir.printFatTime(p.lastWriteTime);
 }
 // print size if requested
 if (!DIR_IS_SUBDIR(&p) && (flags & LS_SIZE)) {
 client.print(' ');
 client.print(p.fileSize);
 }
 */

client.println("");
entry.close();

}
client.println("");

}

// How big our line buffer should be. 100 is plenty!
#define BUFSIZ 100

void loop()
{

char clientline[BUFSIZ];
char name[17];
int index = 0;

EthernetClient client = server.available();
if (client) {

// an http request ends with a blank line
boolean current_line_is_blank = true;

// reset the input buffer
index = 0;

while (client.connected()) {
if (client.available()) {

char c = client.read();

// If it isn't a new line, add the character to the buffer
if (c != '\n' && c != '\r') {

clientline[index] = c;
index++;

©Adafruit Industries Page 13 of 17

// are we too big for the buffer? start tossing out data
if (index >= BUFSIZ)

index = BUFSIZ -1;

// continue to read more data!
continue;

}

// got a \n or \r new line, which means the string is done
clientline[index] = 0;

// Print it out for debugging
Serial.println(clientline);

// Look for substring such as a request to get the file
if (strstr(clientline, "GET /") != 0) {

// this time no space after the /, so a sub-file!
char *filename;

filename = clientline + 5; // look after the "GET /" (5 chars) *******
// a little trick, look for the " HTTP/1.1" string and
// turn the first character of the substring into a 0 to clear it out.
(strstr(clientline, " HTTP"))[0] = 0;

if(filename[strlen(filename)-1] == '/') { // Trim a directory filename
filename[strlen(filename)-1] = 0; // as Open throws error with

trailing /
}

Serial.print(F("Web request for: ")); Serial.println(filename); // print
the file we want

File file = SD.open(filename, O_READ);
if (file == 0) { // Opening the file with return code of 0 is an error

in SDFile.open
client.println("HTTP/1.1 404 Not Found");
client.println("Content-Type: text/html");
client.println();
client.println("<h2>File Not Found!</h2>");
client.println("
<h3>Couldn't open the File!</h3>");
break;

}

Serial.println("File Opened!");

client.println("HTTP/1.1 200 OK");
if (file.isDirectory()) {

Serial.println("is a directory");
//file.close();
client.println("Content-Type: text/html");
client.println();
client.print("<h2>Files in /");
client.print(filename);
client.println(":</h2>");
ListFiles(client,LS_SIZE,file);
file.close();

} else
{ // Any non-directory clicked, server will send file to client for download

client.println("Content-Type: application/octet-stream");
client.println();

char file_buffer[16];
int avail;
while (avail = file.available()) {

int to_read = min(avail, 16);
if (to_read != file.read(file_buffer, to_read)) {

break;
}
// uncomment the serial to debug (slow!)

©Adafruit Industries Page 14 of 17

//Serial.write((char)c);
client.write(file_buffer, to_read);

}
file.close();

}
} else {

// everything else is a 404
client.println("HTTP/1.1 404 Not Found");
client.println("Content-Type: text/html");
client.println();
client.println("<h2>File Not Found!</h2>");

}
break;

}
}
// give the web browser time to receive the data
delay(1);
client.stop();

}
}

void printDirectory(File dir, int numTabs) {
while(true) {

File entry = dir.openNextFile();
if (! entry) {

// no more files
break;

}
for (uint8_t i=0; i<numTabs; i++) {

Serial.print('\t');
}
Serial.print(entry.name());
if (entry.isDirectory()) {

Serial.println("/");
printDirectory(entry, numTabs+1);

} else {
// files have sizes, directories do not
Serial.print("\t\t");
Serial.println(entry.size(), DEC);

}
entry.close();

}
}

Community Fork
There is a fork of the Ethernet library (https://adafru.it/1aj6) available on GitHub from a
community member that is designed to have better performance. Check it out as an
alternative to the official release and read more about its features in this Adafruit
Forum post (https://adafru.it/1aj7).

Ethernet Fork on GitHub
https://adafru.it/1aj6

How it Works and Wrap-up
The main interface for the Ethernet uses code from the standard Arduino example
WebServer and the SD card code used earlier in the tutorial.

©Adafruit Industries Page 15 of 17

https://github.com/SapientHetero/Ethernet
https://forums.adafruit.com/viewtopic.php?p=1055296#p1055296
https://forums.adafruit.com/viewtopic.php?p=1055296#p1055296
https://github.com/SapientHetero/Ethernet

The program implements the very bare bones of an HTML server. The code lists
directories then files as an unordered HTML list.

Ensure the project is powered up and connected via an Ethernet cable to your home
network. The yellow network activity light should blink now & then on one side of the
connection, green on the other. If the lights are not on, check the Ethernet
connection.

Open a web browser on a computer on your network and go to address http://
192.168.1.177 or to the alternate address you coded in your sketch. If you changed the
sketch to use DHCP to get a free address from your router, the address received will
be print on the serial monitor.

The program should output the heading Files: then a list of files on the card. You did
put a few test files on the card earlier, yes? If not, no worries, power down the project,
eject the SD card, put some text-based files on it, reinsert, and power the project up
again.

If you click on a file name, the sketch will send the file and the browser will ask you
for a location to save the file.

If you click on a directory name, a new web page will appear displaying the files in the
subdirectory.

Use the browser back button to go from the text listing screen back to the file list
screen.

If there is a request for a file that is not on the SD card, the sketch will return an HTTP
404 error (file not found). Any other error will also return a 404 error.

©Adafruit Industries Page 16 of 17

Wrap-Up
When the original tutorial for using the Ethernet shield and sketch was written 7+
years ago, serving files via Ethernet was pretty novel (read: wicked). Ethernet shields
are not as common now. It is likely due to the proliferation of Wi-Fi boards.

Hopefully this updated tutorial will give you the basics for using a microcontroller to
access an SD card (or something else) via Ethernet. The same methods can be used if
you wire up a SD card breakout to the your microcontroller pins, just be sure to check
for any necessary code changes.

Most newer microcontroller boards have more memory, so a more robust web server
capability may considered. Perhaps you can look at this code and consider a new
implementation with an Adafruit Express board and CircuitPython. The future awaits
our innovation.

If you come up with great designs, please share them in the Adafruit forums (https://
adafru.it/dYq) and in the Adafruit Discord chat ().

©Adafruit Industries Page 17 of 17

https://forums.adafruit.com/
http://adafru.it/discord

	Arduino Ethernet + SD Card
	Table of Contents
	Overview
	SD Card Preparation
	Reading SD Card Information
	Listing Files
	Serving Files over Ethernet
	How it Works and Wrap-up

	Overview
	SD Card Preparation
	Reading SD Card Information
	Listing Files
	Serving Files over Ethernet
	Community Fork

	How it Works and Wrap-up
	Wrap-Up

