Random Golf of the Day
Meta: I am running this as a little series of challenges revolving around the topic of randomness - in the form of a 9-hole golf course. I'm maintaining a leaderboard across all challenges in the series, and offer a large bounty to the person competing in all of them with the lowest overall score.
Just to be clear, despite the name, I won't be posting these once a day. Expect the next one in 6 to 8 weeks.
About the Series
This will be a series of 9 challenges. See the first instalment for more information about the series.
#1: Shuffle an Array
array-manipulationpermutations
#2: Numbers from a Normal Distribution
#3: Integer Partitions
numbercombinatoricsinteger-partitions
#4: The Bertrand Paradox
#5: Diamond Tilings
#6: Roll a d20
A very common die in table-top RPGs is the twenty-side die (an icosahedron, commonly known as d20). It is your task to roll such a die. However, if you were just returning a random number between 1 and 20, that would be a bit trivial. So your task is to generate a random net for a given die.
We'll use the following net. It's a triangle strip, so it can be easily represented as a list of integers:
E.g. if you are given the input:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] That would correspond to the following die (fun fact: this is the net used by Magic: the Gathering life counters).
However, this is not the only net representing this die. Depending on how we unroll the faces, there are 60 different nets. Here is another one:
[1, 8, 9, 10, 2, 3, 4, 5, 6, 7, 17, 18, 19, 11, 12, 13, 14, 15, 16, 20] Or graphically (note that I didn't rotate the faces for simplicity):
The Challenge
Given an a list of integers representing a die (as described above) and an integer N, output N independently, uniformly random d20 nets corresponding to the given die. (That is, each of the 60 possible nets should have the same probability of being generated.)
Of course, due to the technical limitations of PRNGs, perfect uniformity will be impossible. For the purpose of assessing uniformity of your submission, the following operations will be regarded as yielding perfectly uniform distributions:
- Obtaining a number from a PRNG (over any range), which is documented to be (approximately) uniform.
- Mapping a uniform distribution over a larger set of numbers onto a smaller set via modulo or multiplication (or some other operation which distributes values evenly). The larger set has to contain at least 1024 times as many possible values as the smaller set.
Your program should be able to generate 100 nets in less than a second (so don't try generating random nets until one corresponds to the die given above).
You may write a program or function, taking input via STDIN (or closest alternative), command-line argument or function argument and outputting the result via STDOUT (or closest alternative), function return value or function (out) parameter.
Input and output may be in any convenient, unambiguous, flat list format. You may assume that the face values of the d20 are distinct, positive integers, which fit into your language's natural integer type.
This is code golf, so the shortest submission (in bytes) wins. And of course, the shortest submission per user will also enter into the overall leaderboard of the series.
Sample Outputs
For the input
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] The 60 possible nets (provided I didn't make a mistake), in no particular order, are:
[11, 10, 9, 18, 19, 20, 13, 12, 3, 2, 1, 8, 7, 17, 16, 15, 14, 4, 5, 6] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] [8, 7, 17, 18, 9, 10, 2, 1, 5, 6, 15, 16, 20, 19, 11, 12, 3, 4, 14, 13] [3, 12, 13, 14, 4, 5, 1, 2, 10, 11, 19, 20, 16, 15, 6, 7, 8, 9, 18, 17] [3, 4, 5, 1, 2, 10, 11, 12, 13, 14, 15, 6, 7, 8, 9, 18, 19, 20, 16, 17] [11, 19, 20, 13, 12, 3, 2, 10, 9, 18, 17, 16, 15, 14, 4, 5, 1, 8, 7, 6] [4, 14, 15, 6, 5, 1, 2, 3, 12, 13, 20, 16, 17, 7, 8, 9, 10, 11, 19, 18] [2, 10, 11, 12, 3, 4, 5, 1, 8, 9, 18, 19, 20, 13, 14, 15, 6, 7, 17, 16] [4, 5, 1, 2, 3, 12, 13, 14, 15, 6, 7, 8, 9, 10, 11, 19, 20, 16, 17, 18] [10, 2, 1, 8, 9, 18, 19, 11, 12, 3, 4, 5, 6, 7, 17, 16, 20, 13, 14, 15] [3, 2, 10, 11, 12, 13, 14, 4, 5, 1, 8, 9, 18, 19, 20, 16, 15, 6, 7, 17] [7, 8, 1, 5, 6, 15, 16, 17, 18, 9, 10, 2, 3, 4, 14, 13, 20, 19, 11, 12] [13, 12, 11, 19, 20, 16, 15, 14, 4, 3, 2, 10, 9, 18, 17, 7, 6, 5, 1, 8] [16, 15, 14, 13, 20, 19, 18, 17, 7, 6, 5, 4, 3, 12, 11, 10, 9, 8, 1, 2] [15, 16, 17, 7, 6, 5, 4, 14, 13, 20, 19, 18, 9, 8, 1, 2, 3, 12, 11, 10] [20, 13, 12, 11, 19, 18, 17, 16, 15, 14, 4, 3, 2, 10, 9, 8, 7, 6, 5, 1] [5, 4, 14, 15, 6, 7, 8, 1, 2, 3, 12, 13, 20, 16, 17, 18, 9, 10, 11, 19] [10, 11, 12, 3, 2, 1, 8, 9, 18, 19, 20, 13, 14, 4, 5, 6, 7, 17, 16, 15] [4, 3, 12, 13, 14, 15, 6, 5, 1, 2, 10, 11, 19, 20, 16, 17, 7, 8, 9, 18] [19, 20, 13, 12, 11, 10, 9, 18, 17, 16, 15, 14, 4, 3, 2, 1, 8, 7, 6, 5] [1, 8, 9, 10, 2, 3, 4, 5, 6, 7, 17, 18, 19, 11, 12, 13, 14, 15, 16, 20] [8, 1, 5, 6, 7, 17, 18, 9, 10, 2, 3, 4, 14, 15, 16, 20, 19, 11, 12, 13] [18, 9, 8, 7, 17, 16, 20, 19, 11, 10, 2, 1, 5, 6, 15, 14, 13, 12, 3, 4] [12, 3, 2, 10, 11, 19, 20, 13, 14, 4, 5, 1, 8, 9, 18, 17, 16, 15, 6, 7] [2, 3, 4, 5, 1, 8, 9, 10, 11, 12, 13, 14, 15, 6, 7, 17, 18, 19, 20, 16] [10, 9, 18, 19, 11, 12, 3, 2, 1, 8, 7, 17, 16, 20, 13, 14, 4, 5, 6, 15] [9, 8, 7, 17, 18, 19, 11, 10, 2, 1, 5, 6, 15, 16, 20, 13, 12, 3, 4, 14] [16, 17, 7, 6, 15, 14, 13, 20, 19, 18, 9, 8, 1, 5, 4, 3, 12, 11, 10, 2] [17, 7, 6, 15, 16, 20, 19, 18, 9, 8, 1, 5, 4, 14, 13, 12, 11, 10, 2, 3] [1, 5, 6, 7, 8, 9, 10, 2, 3, 4, 14, 15, 16, 17, 18, 19, 11, 12, 13, 20] [9, 18, 19, 11, 10, 2, 1, 8, 7, 17, 16, 20, 13, 12, 3, 4, 5, 6, 15, 14] [16, 20, 19, 18, 17, 7, 6, 15, 14, 13, 12, 11, 10, 9, 8, 1, 5, 4, 3, 2] [5, 1, 2, 3, 4, 14, 15, 6, 7, 8, 9, 10, 11, 12, 13, 20, 16, 17, 18, 19] [8, 9, 10, 2, 1, 5, 6, 7, 17, 18, 19, 11, 12, 3, 4, 14, 15, 16, 20, 13] [13, 20, 16, 15, 14, 4, 3, 12, 11, 19, 18, 17, 7, 6, 5, 1, 2, 10, 9, 8] [6, 15, 16, 17, 7, 8, 1, 5, 4, 14, 13, 20, 19, 18, 9, 10, 2, 3, 12, 11] [6, 5, 4, 14, 15, 16, 17, 7, 8, 1, 2, 3, 12, 13, 20, 19, 18, 9, 10, 11] [7, 6, 15, 16, 17, 18, 9, 8, 1, 5, 4, 14, 13, 20, 19, 11, 10, 2, 3, 12] [19, 18, 17, 16, 20, 13, 12, 11, 10, 9, 8, 7, 6, 15, 14, 4, 3, 2, 1, 5] [14, 15, 6, 5, 4, 3, 12, 13, 20, 16, 17, 7, 8, 1, 2, 10, 11, 19, 18, 9] [17, 18, 9, 8, 7, 6, 15, 16, 20, 19, 11, 10, 2, 1, 5, 4, 14, 13, 12, 3] [6, 7, 8, 1, 5, 4, 14, 15, 16, 17, 18, 9, 10, 2, 3, 12, 13, 20, 19, 11] [14, 13, 20, 16, 15, 6, 5, 4, 3, 12, 11, 19, 18, 17, 7, 8, 1, 2, 10, 9] [20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] [7, 17, 18, 9, 8, 1, 5, 6, 15, 16, 20, 19, 11, 10, 2, 3, 4, 14, 13, 12] [15, 6, 5, 4, 14, 13, 20, 16, 17, 7, 8, 1, 2, 3, 12, 11, 19, 18, 9, 10] [9, 10, 2, 1, 8, 7, 17, 18, 19, 11, 12, 3, 4, 5, 6, 15, 16, 20, 13, 14] [2, 1, 8, 9, 10, 11, 12, 3, 4, 5, 6, 7, 17, 18, 19, 20, 13, 14, 15, 16] [12, 13, 14, 4, 3, 2, 10, 11, 19, 20, 16, 15, 6, 5, 1, 8, 9, 18, 17, 7] [17, 16, 20, 19, 18, 9, 8, 7, 6, 15, 14, 13, 12, 11, 10, 2, 1, 5, 4, 3] [18, 17, 16, 20, 19, 11, 10, 9, 8, 7, 6, 15, 14, 13, 12, 3, 2, 1, 5, 4] [18, 19, 11, 10, 9, 8, 7, 17, 16, 20, 13, 12, 3, 2, 1, 5, 6, 15, 14, 4] [11, 12, 3, 2, 10, 9, 18, 19, 20, 13, 14, 4, 5, 1, 8, 7, 17, 16, 15, 6] [15, 14, 13, 20, 16, 17, 7, 6, 5, 4, 3, 12, 11, 19, 18, 9, 8, 1, 2, 10] [19, 11, 10, 9, 18, 17, 16, 20, 13, 12, 3, 2, 1, 8, 7, 6, 15, 14, 4, 5] [12, 11, 19, 20, 13, 14, 4, 3, 2, 10, 9, 18, 17, 16, 15, 6, 5, 1, 8, 7] [20, 16, 15, 14, 13, 12, 11, 19, 18, 17, 7, 6, 5, 4, 3, 2, 10, 9, 8, 1] [13, 14, 4, 3, 12, 11, 19, 20, 16, 15, 6, 5, 1, 2, 10, 9, 18, 17, 7, 8] [5, 6, 7, 8, 1, 2, 3, 4, 14, 15, 16, 17, 18, 9, 10, 11, 12, 13, 20, 19] [14, 4, 3, 12, 13, 20, 16, 15, 6, 5, 1, 2, 10, 11, 19, 18, 17, 7, 8, 9] For any other net, simply replace every occurrence of i with the ith number in the input (where i is 1-based).
Further ideas (still unordered):
- Poisson disc sampling: This is a method to randomly distribute points across the plane densely while maintaining a minimum distance between points. I think this might be nice to golf. Further reading.
- Generate a random chessboard: The submissions should randomly produce a believable chessboard. "Believable" here mostly affects pawns: they may not appear on the first row of their colour, there may be more pieces of other types if pawns are missing (due to conversion), and two pawns may only be in the same column if at least one of the opponent's pieces is missing. Submissions should be able to generate any valid board with finite probability, but it doesn't have to be uniform.
- Generate a random arithmetic expression: This basically asks to create a tree of binary and unary operators, subject to some constraint - either on the structure of the tree (
nnodes, say) or on the result of the arithmetic expression (generate a random expression that evaluates to a givenn). - Generate a random hole-free polyomino (or orthogonal polygon) (of given size).
- Vague idea: Generate points on a sphere with uniform distribution.
- Vague idea: I'd like to include a challenge on random walks.
- Vague idea: I'd like to include a challenge which has to generate a random number with a constraint based on its digits, but where you're not allowed to use strings or arrays (so you have to access the digits arithmetically).
- Idea I'm not sure about: Generate a valid Unicode character as a set of UTF-8 bytes with uniform randomness.
- Idea: Implement a (specific) PRNG.
- Idea: Generate a random Brainfuck program (or other balanced string). Would probably need to require uniform distribution and deterministic runtime to be interesting.


