Skip to main content
Commonmark migration
Source Link

#MATL, 7 bytes

MATL, 7 bytes

*i2GY*= 

Inputs in order: l,v,A.

Explanation:

* % implicitly get l and v, multiply. i % get A 2G % get second input, i.e., v again Y* % perform matrix multiplication = % test equality of both multiplications 

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but it would be cool if someone found a 5 or 6 byte solution.

Basically, this calculates l*v==A*v.

#MATL, 7 bytes

*i2GY*= 

Inputs in order: l,v,A.

Explanation:

* % implicitly get l and v, multiply. i % get A 2G % get second input, i.e., v again Y* % perform matrix multiplication = % test equality of both multiplications 

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but it would be cool if someone found a 5 or 6 byte solution.

Basically, this calculates l*v==A*v.

MATL, 7 bytes

*i2GY*= 

Inputs in order: l,v,A.

Explanation:

* % implicitly get l and v, multiply. i % get A 2G % get second input, i.e., v again Y* % perform matrix multiplication = % test equality of both multiplications 

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but it would be cool if someone found a 5 or 6 byte solution.

Basically, this calculates l*v==A*v.

added 169 characters in body
Source Link
Sanchises
  • 9.5k
  • 1
  • 37
  • 63

#MATL, 7 bytes

*i2GY*= 

Inputs in order: l,v,A.

Explanation:

* % implicitly get l and v, multiply. i % get A 2G % get second input, i.e., v again Y* % perform matrix multiplication = % test equality of both multiplications 

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but I am not yet quite sure that 7 bytes is optimal, especially if the input order canit would be changedcool if someone found a 5 or 6 byte solution.

Basically, this calculates l*v==A*v.

#MATL, 7 bytes

*i2GY*= 

Inputs in order: l,v,A.

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but I am not yet quite sure that 7 bytes is optimal, especially if the input order can be changed.

Basically, this calculates l*v==A*v.

#MATL, 7 bytes

*i2GY*= 

Inputs in order: l,v,A.

Explanation:

* % implicitly get l and v, multiply. i % get A 2G % get second input, i.e., v again Y* % perform matrix multiplication = % test equality of both multiplications 

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but it would be cool if someone found a 5 or 6 byte solution.

Basically, this calculates l*v==A*v.

Post Undeleted by Sanchises
Post Deleted by Sanchises
added 140 characters in body
Source Link
Sanchises
  • 9.5k
  • 1
  • 37
  • 63

#MATL, 7 bytes

Y*i/2G=*i2GY*= 

Inputs in order: Al,v,lA.

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but I am not yet quite sure that 7 bytes is optimal, especially if the input order can be changed.

Basically, this calculates A*v/l==vl*v==A*v.

#MATL, 7 bytes

Y*i/2G= 

Inputs in order: A,v,l.

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but I am not yet quite sure that 7 bytes is optimal, especially if the input order can be changed.

Basically, this calculates A*v/l==v.

#MATL, 7 bytes

*i2GY*= 

Inputs in order: l,v,A.

Surprisingly long answer, if you ask me, mostly because I needed a way to get all the input correctly. I do not think that less than 5 bytes is possible, but I am not yet quite sure that 7 bytes is optimal, especially if the input order can be changed.

Basically, this calculates l*v==A*v.

added 103 characters in body
Source Link
Sanchises
  • 9.5k
  • 1
  • 37
  • 63
Loading
Source Link
Sanchises
  • 9.5k
  • 1
  • 37
  • 63
Loading