Skip to main content
Commonmark migration
Source Link

#26. TI-BASIC, 274 bytes, A000183

26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y₁ "2+Y₁(X-1)+Y₁(X+1→Y₂ {0,0,0,1,2,20→L₁ Prompt A Lbl A If A≤dim(L₁ Then Disp L₁(A Else 1+dim(L₁ (~1)^Ans(4Ans+Y₂(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L₁(Ans-2)+(~1)^AnsY₂(Ans-2))+(Ans/(Ans-3))((Ans-5)L₁(Ans-3)+2(~1)^(Ans-1)Y₂(Ans-3))+(Ans/(Ans-4))(L₁(Ans-4)+(~1)^(Ans-1)Y₂(Ans-4→L₁(Ans Goto A End 

Evaluates the recursive formula found on the OEIS link.

Next Sequence

#26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y₁ "2+Y₁(X-1)+Y₁(X+1→Y₂ {0,0,0,1,2,20→L₁ Prompt A Lbl A If A≤dim(L₁ Then Disp L₁(A Else 1+dim(L₁ (~1)^Ans(4Ans+Y₂(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L₁(Ans-2)+(~1)^AnsY₂(Ans-2))+(Ans/(Ans-3))((Ans-5)L₁(Ans-3)+2(~1)^(Ans-1)Y₂(Ans-3))+(Ans/(Ans-4))(L₁(Ans-4)+(~1)^(Ans-1)Y₂(Ans-4→L₁(Ans Goto A End 

Evaluates the recursive formula found on the OEIS link.

Next Sequence

26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y₁ "2+Y₁(X-1)+Y₁(X+1→Y₂ {0,0,0,1,2,20→L₁ Prompt A Lbl A If A≤dim(L₁ Then Disp L₁(A Else 1+dim(L₁ (~1)^Ans(4Ans+Y₂(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L₁(Ans-2)+(~1)^AnsY₂(Ans-2))+(Ans/(Ans-3))((Ans-5)L₁(Ans-3)+2(~1)^(Ans-1)Y₂(Ans-3))+(Ans/(Ans-4))(L₁(Ans-4)+(~1)^(Ans-1)Y₂(Ans-4→L₁(Ans Goto A End 

Evaluates the recursive formula found on the OEIS link.

Next Sequence

added 57 characters in body
Source Link
Scott Milner
  • 1.9k
  • 12
  • 22

#26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y15→Y₁ "2+Y1"2+Y₁(X-1)+Y1+Y₁(X+1→Y2X+1→Y₂ {0,0,0,1,2,20→L120→L₁ Prompt A Lbl A If A≤dim(L1L₁ Then Disp L1L₁(A Else 1+dim(L1L₁ (~1)^Ans(4Ans+Y24Ans+Y₂(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L1L₁(Ans-2)+(~1)^AnsY2^AnsY₂(Ans-2))+(Ans/(Ans-3))((Ans-5)L1L₁(Ans-3)+2(~1)^(Ans-1)Y2Y₂(Ans-3))+(Ans/(Ans-4))(L1L₁(Ans-4)+(~1)^(Ans-1)Y2Y₂(Ans-4→L14→L₁(Ans Goto A End 

Evaluates the recursive formula found on the OEIS link.

Next Sequence

#26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y1 "2+Y1(X-1)+Y1(X+1→Y2 {0,0,0,1,2,20→L1 Prompt A Lbl A If A≤dim(L1 Then Disp L1(A Else 1+dim(L1 (~1)^Ans(4Ans+Y2(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L1(Ans-2)+(~1)^AnsY2(Ans-2))+(Ans/(Ans-3))((Ans-5)L1(Ans-3)+2(~1)^(Ans-1)Y2(Ans-3))+(Ans/(Ans-4))(L1(Ans-4)+(~1)^(Ans-1)Y2(Ans-4→L1(Ans Goto A End 

Next Sequence

#26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y₁ "2+Y₁(X-1)+Y₁(X+1→Y₂ {0,0,0,1,2,20→L₁ Prompt A Lbl A If A≤dim(L₁ Then Disp L₁(A Else 1+dim(L₁ (~1)^Ans(4Ans+Y₂(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L₁(Ans-2)+(~1)^AnsY₂(Ans-2))+(Ans/(Ans-3))((Ans-5)L₁(Ans-3)+2(~1)^(Ans-1)Y₂(Ans-3))+(Ans/(Ans-4))(L₁(Ans-4)+(~1)^(Ans-1)Y₂(Ans-4→L₁(Ans Goto A End 

Evaluates the recursive formula found on the OEIS link.

Next Sequence

added 105 characters in body
Source Link
Scott Milner
  • 1.9k
  • 12
  • 22

#26. TI-BASIC, 274 bytesbytes, A000183A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y1 "2+Y1(X-1)+Y1(X+1→Y2 {0,0,0,1,2,20→L1 Prompt A Lbl A If A≤dim(L1 Then Disp L1(A Else 1+dim(L1 (~1)^Ans(4Ans+Y2(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L1(Ans-2)+(~1)^AnsY2(Ans-2))+(Ans/(Ans-3))((Ans-5)L1(Ans-3)+2(~1)^(Ans-1)Y2(Ans-3))+(Ans/(Ans-4))(L1(Ans-4)+(~1)^(Ans-1)Y2(Ans-4→L1(Ans Goto A End 

Next Sequence

#26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y1 "2+Y1(X-1)+Y1(X+1→Y2 {0,0,0,1,2,20→L1 Prompt A Lbl A If A≤dim(L1 Then Disp L1(A Else 1+dim(L1 (~1)^Ans(4Ans+Y2(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L1(Ans-2)+(~1)^AnsY2(Ans-2))+(Ans/(Ans-3))((Ans-5)L1(Ans-3)+2(~1)^(Ans-1)Y2(Ans-3))+(Ans/(Ans-4))(L1(Ans-4)+(~1)^(Ans-1)Y2(Ans-4→L1(Ans Goto A End 

#26. TI-BASIC, 274 bytes, A000183

.5(1+√(5→θ "int(.5+θ^X/√(5→Y1 "2+Y1(X-1)+Y1(X+1→Y2 {0,0,0,1,2,20→L1 Prompt A Lbl A If A≤dim(L1 Then Disp L1(A Else 1+dim(L1 (~1)^Ans(4Ans+Y2(Ans))+(Ans/(Ans-1))((Ans+1))-(2Ans/(Ans-2))((Ans-3)L1(Ans-2)+(~1)^AnsY2(Ans-2))+(Ans/(Ans-3))((Ans-5)L1(Ans-3)+2(~1)^(Ans-1)Y2(Ans-3))+(Ans/(Ans-4))(L1(Ans-4)+(~1)^(Ans-1)Y2(Ans-4→L1(Ans Goto A End 

Next Sequence

Source Link
Scott Milner
  • 1.9k
  • 12
  • 22
Loading