APL (Dyalog Extended), 2020 18 bytes
,(×⌿⍤(×⌿!∘⊂⌹⍥↑⊢⊂⍛\)⌹⊢!⊢⍨\⊢)⍳⍤+ A tacit dyadic function that takes m and n as left and right arguments respectively. Mainly uses the matrix division built-in ⌹ to solve the linear equations:
$$ \begin{bmatrix} \binom{1}{1} & \binom{1}{2} & \cdots & \binom{1}{n+m} \\ \binom{2}{1} & \binom{2}{2} & \cdots & \binom{2}{n+m} \\ \vdots & \vdots & \ddots & \vdots \\ \binom{n+m}{1} & \binom{n+m}{2} & \cdots & \binom{n+m}{n+m} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n+m} \end{bmatrix} = \begin{bmatrix} \binom{1}{n} \binom{1}{m} \\ \binom{2}{n} \binom{2}{m} \\ \vdots \\ \binom{n+m}{n} \binom{n+m}{m} \end{bmatrix} \Leftrightarrow Ba = v $$
When \$ B \$ and \$ v \$ are ready, the answer is simply v⌹B. So the main work is to golf the parts to build \$ B \$ and \$ v \$.
How it works
,(×⌿⍤(×⌿!∘⊂⌹⍥↑⊢⊂⍛\)⌹⊢!⊢⍨\⊢)⍳⍤+ ⍝ Left argument: n, Right argument: m ,( )⍳⍤+ ⍝ Pass [n m] and [1 .. n+m] to the inner function ⊢⊂⍛!⊢!⍨\⊢ ⍝ Compute the nested array version of B ×⌿⍤(×⌿!∘⊂ \) ⍝ Compute the nested array version of v ⍥↑ ⍝ Convert both sides to proper matrix/vector ⌹ ⍝ Solve the linear equation Computing \$ B \$
x!y computes \$ \binom{y}{x} \$.
⊢⊂⍛!⊢!⍨\⊢ ⍝ Left: [n m], Right: [1 .. n+m] ⊢ ⊢ ⍝ Use right argument for both sides (L, R) ⊂⍛ !⍨\ ⍝ EncloseOuter L,product soby entireflipped Lbinomial: is mapped to each element of R ⍝ For each !pair of l∊L ⍝and Computer∊R, binomialcompute r!l or lCr The result is a vector of vectors that looks like \$ (\binom{1}{1}, \binom{1}{2}, \cdots, \binom{1}{n+m}), (\binom{2}{1}, \binom{2}{2}, \cdots, \binom{2}{n+m}), \cdots \$. When ↑ is applied, each inner vector becomes a row of the matrix \$ B \$.
Computing \$ v \$
×⌿⍤×⌿!∘⊂\ ⍝ Left: [n m], Right: [1 .. n+m] ∘⊂ ⍝ Enclose right !\ ⍝ Outer ⍝product Computeby binomial function ⍝ Result is length-2a nestedmatrix vectorof two rows [U V] ×⌿⍤ ×⌿ ⍝ Reduce by multiply; compute U×V element-wise