List to integer, 10 8 bytes
TṪạL;³ÆẸ
Maps lists of non-negative integers to positive integers. Try it online!
Integer to list, 8 bytes
ÆE©Ḣ0ẋ®;
Maps positive integers to lists of non-negative integers . Try it online!
Background
Let p0, p1, p2, ⋯ be the sequence of prime numbers in ascending order.
For each list of non-negative integers A := [a1, ⋯, an], we map A to p0z(A)p1a1⋯pnan, where z(A) is the number of trailing zeroes of A.
Reversing the above map in straightforward. For a positive integer k, we factorize it uniquely as the product of consecutive prime powers n = p0α0p1α1⋯pnαn, where αn > 0, then reconstruct the list as [α1, ⋯, αn], appending α0 zeroes.
How it works
List to integer
TṪạL;³ÆẸ Main link. Argument: A (list of non-negative integers) T Yield all indices of A that correspond to truthy (i.e., non-zero) items. Ṫ Tail; select the last truthy index. This returns 0 if the list is empty. L Yield the length of A. ạ Compute the absolute difference of the last truthy index and the length. This yields the amount of trailing zeroes of A. ;³ Prepend the difference to A. ÆẸ Convert the list from prime exponents to integer.
Integer to list
ÆE©Ḣ0ẋ®; Main link. Input: k (positive integer) ÆE Convert k to the list of its prime exponents. © Save the list of prime exponents in the register. Ḣ Head; pop the first exponent. If the list is empty, this yields 0. 0ẋ Construct a list of that many zeroes. ®; Concatenate the popped list of exponents with the list of zeroes.
Example output
The first one hundred positive integers map to the following lists.
1: [] 2: [0] 3: [1] 4: [0, 0] 5: [0, 1] 6: [1, 0] 7: [0, 0, 1] 8: [0, 0, 0] 9: [2] 10: [0, 1, 0] 11: [0, 0, 0, 1] 12: [1, 0, 0] 13: [0, 0, 0, 0, 1] 14: [0, 0, 1, 0] 15: [1, 1] 16: [0, 0, 0, 0] 17: [0, 0, 0, 0, 0, 1] 18: [2, 0] 19: [0, 0, 0, 0, 0, 0, 1] 20: [0, 1, 0, 0] 21: [1, 0, 1] 22: [0, 0, 0, 1, 0] 23: [0, 0, 0, 0, 0, 0, 0, 1] 24: [1, 0, 0, 0] 25: [0, 2] 26: [0, 0, 0, 0, 1, 0] 27: [3] 28: [0, 0, 1, 0, 0] 29: [0, 0, 0, 0, 0, 0, 0, 0, 1] 30: [1, 1, 0] 31: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 32: [0, 0, 0, 0, 0] 33: [1, 0, 0, 1] 34: [0, 0, 0, 0, 0, 1, 0] 35: [0, 1, 1] 36: [2, 0, 0] 37: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 38: [0, 0, 0, 0, 0, 0, 1, 0] 39: [1, 0, 0, 0, 1] 40: [0, 1, 0, 0, 0] 41: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 42: [1, 0, 1, 0] 43: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 44: [0, 0, 0, 1, 0, 0] 45: [2, 1] 46: [0, 0, 0, 0, 0, 0, 0, 1, 0] 47: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 48: [1, 0, 0, 0, 0] 49: [0, 0, 2] 50: [0, 2, 0] 51: [1, 0, 0, 0, 0, 1] 52: [0, 0, 0, 0, 1, 0, 0] 53: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 54: [3, 0] 55: [0, 1, 0, 1] 56: [0, 0, 1, 0, 0, 0] 57: [1, 0, 0, 0, 0, 0, 1] 58: [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 59: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 60: [1, 1, 0, 0] 61: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 62: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 63: [2, 0, 1] 64: [0, 0, 0, 0, 0, 0] 65: [0, 1, 0, 0, 1] 66: [1, 0, 0, 1, 0] 67: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 68: [0, 0, 0, 0, 0, 1, 0, 0] 69: [1, 0, 0, 0, 0, 0, 0, 1] 70: [0, 1, 1, 0] 71: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 72: [2, 0, 0, 0] 73: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 74: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 75: [1, 2] 76: [0, 0, 0, 0, 0, 0, 1, 0, 0] 77: [0, 0, 1, 1] 78: [1, 0, 0, 0, 1, 0] 79: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 80: [0, 1, 0, 0, 0, 0] 81: [4] 82: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 83: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 84: [1, 0, 1, 0, 0] 85: [0, 1, 0, 0, 0, 1] 86: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 87: [1, 0, 0, 0, 0, 0, 0, 0, 1] 88: [0, 0, 0, 1, 0, 0, 0] 89: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 90: [2, 1, 0] 91: [0, 0, 1, 0, 1] 92: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 93: [1, 0, 0, 0, 0, 0, 0, 0, 0, 1] 94: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 95: [0, 1, 0, 0, 0, 0, 1] 96: [1, 0, 0, 0, 0, 0] 97: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 98: [0, 0, 2, 0] 99: [2, 0, 0, 1] 100: [0, 2, 0, 0]
N^inf -> N? \$\endgroup\$