I have an object detection model with my labels and images. I am trying to use the tensorflow ranking metric for MAP, https://www.tensorflow.org/ranking/api_docs/python/tfr/keras/metrics/MeanAveragePrecisionMetric. The metric is used when I compile the model but this is the result I get:
Epoch 2/220 92/92 [==============================] - 22s 243ms/step - loss: 0.0027 - mean_average_precision_metric: 0.0000e+00 - val_loss: 0.0019 - val_mean_average_precision_metric: 0.0000e+00 Epoch 3/220 92/92 [==============================] - 22s 245ms/step - loss: 0.0014 - mean_average_precision_metric: 0.0000e+00 - val_loss: 7.5579e-04 - val_mean_average_precision_metric: 0.0000e+00 Epoch 4/220 92/92 [==============================] - 23s 247ms/step - loss: 8.7288e-04 - mean_average_precision_metric: 0.0000e+00 - val_loss: 6.7357e-04 - val_mean_average_precision_metric: 0.0000e+00 Epoch 5/220 92/92 [==============================] - 23s 248ms/step - loss: 7.3901e-04 - mean_average_precision_metric: 0.0000e+00 - val_loss: 5.3464e-04 - val_mean_average_precision_metric: 0.0000e+00 My labels and images are all normalized as well according to my image dimensions.
train_images /= 255 val_images /= 255 test_images /= 255 train_targets /= TARGET_SIZE val_targets /= TARGET_SIZE test_targets /= TARGET_SIZE model.compile(loss='mse', optimizer='adam', metrics=[tfr.keras.metrics.MeanAveragePrecisionMetric()]) Could the metric not be the right way of using it or maybe not meant for my data?