First, let's create a mcve to play with:
import pandas as pd import numpy as np In [1]: categorical_array = np.random.choice(['Var1','Var2','Var3'], size=(5,3), p=[0.25,0.5,0.25]) df = pd.DataFrame(categorical_array, columns=map(lambda x:chr(97+x), range(categorical_array.shape[1]))) # Add another column that isn't categorical but float df['d'] = np.random.rand(len(df)) print(df) Out[1]: a b c d 0 Var3 Var3 Var3 0.953153 1 Var1 Var2 Var1 0.924896 2 Var2 Var2 Var2 0.273205 3 Var2 Var1 Var3 0.459676 4 Var2 Var1 Var1 0.114358
Now we can use pd.get_dummies to encode the first three columns.
Note that I'm using the drop_firstparameter because N-1 dummies are sufficient to fully describe N possibilities (eg: if a_Var2 and a_Var3 are 0, then it's a_Var1). Also, I'm specifically specifying the columns but I don't have to as it will be columns with dtype either object or categorical (more below).
In [2]: df_encoded = pd.get_dummies(df, columns=['a','b', 'c'], drop_first=True) print(df_encoded] Out[2]: d a_Var2 a_Var3 b_Var2 b_Var3 c_Var2 c_Var3 0 0.953153 0 1 0 1 0 1 1 0.924896 0 0 1 0 0 0 2 0.273205 1 0 1 0 1 0 3 0.459676 1 0 0 0 0 1 4 0.114358 1 0 0 0 0 0
In your specific application, you'll have to provide a list of column that are Categorical, or you'll have to infer which columns are Categorical.
Best case scenario your dataframe already has these columns with a dtype=category and you can pass columns=df.columns[df.dtypes == 'category'] to get_dummies.
Otherwise I suggest setting the dtype of all other columns as appropriate (hint: pd.to_numeric, pd.to_datetime, etc) and you'll be left with columns that have an object dtype and these should be your categorical columns.
The pd.get_dummies parameter columns defaults as follows:
columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted.