0
$\begingroup$

I am training a CNN on some new dataset.

Usually, the accuracy steadily improves over 10-20 epochs.

I have created a new but similar dataset (using same methods) but now I see a sharp drop after 7th epoch, from which is never recovers.

What might this mean I am doing wrong?

3520/3662 [===========================>..] - ETA: 7s - loss: 0.1260 - acc: 0.9753 3552/3662 [============================>.] - ETA: 5s - loss: 0.1294 - acc: 0.9752 3584/3662 [============================>.] - ETA: 4s - loss: 0.1283 - acc: 0.9754 3616/3662 [============================>.] - ETA: 2s - loss: 0.1360 - acc: 0.9751 3648/3662 [============================>.] - ETA: 0s - loss: 0.1348 - acc: 0.9753 3662/3662 [==============================] - 199s 54ms/step - loss: 0.1387 - acc: 0.9752 Epoch 7/50 32/3662 [..............................] - ETA: 3:29 - loss: 1.1921e-07 - acc: 1.0000 64/3662 [..............................] - ETA: 3:44 - loss: 1.1921e-07 - acc: 1.0000 96/3662 [..............................] - ETA: 3:43 - loss: 0.5037 - acc: 0.9688 128/3662 [>.............................] - ETA: 3:36 - loss: 0.6296 - acc: 0.9609 160/3662 [>.............................] - ETA: 3:29 - loss: 0.8059 - acc: 0.9500 192/3662 [>.............................] - ETA: 3:23 - loss: 0.7555 - acc: 0.9531 224/3662 [>.............................] - ETA: 3:20 - loss: 0.7915 - acc: 0.9509 256/3662 [=>............................] - ETA: 3:17 - loss: 0.6926 - acc: 0.9570 288/3662 [=>............................] - ETA: 3:14 - loss: 0.7276 - acc: 0.9549 320/3662 [=>............................] - ETA: 3:11 - loss: 0.9570 - acc: 0.9406 352/3662 [=>............................] - ETA: 3:08 - loss: 1.0990 - acc: 0.9318 384/3662 [==>...........................] - ETA: 3:05 - loss: 1.1531 - acc: 0.9271 416/3662 [==>...........................] - ETA: 3:02 - loss: 1.1032 - acc: 0.9303 448/3662 [==>...........................] - ETA: 3:00 - loss: 1.2832 - acc: 0.9174 480/3662 [==>...........................] - ETA: 2:58 - loss: 1.3991 - acc: 0.9104 512/3662 [===>..........................] - ETA: 2:55 - loss: 1.4691 - acc: 0.9062 544/3662 [===>..........................] - ETA: 2:53 - loss: 1.4420 - acc: 0.9081 576/3662 [===>..........................] - ETA: 2:50 - loss: 1.5018 - acc: 0.9045 608/3662 [===>..........................] - ETA: 2:48 - loss: 1.4492 - acc: 0.9079 640/3662 [====>.........................] - ETA: 2:46 - loss: 1.3768 - acc: 0.9125 672/3662 [====>.........................] - ETA: 2:44 - loss: 1.3112 - acc: 0.9167 704/3662 [====>.........................] - ETA: 2:42 - loss: 1.3431 - acc: 0.9148 736/3662 [=====>........................] - ETA: 2:40 - loss: 1.3066 - acc: 0.9171 768/3662 [=====>........................] - ETA: 2:38 - loss: 1.2941 - acc: 0.9180 800/3662 [=====>........................] - ETA: 2:36 - loss: 1.3431 - acc: 0.9150 832/3662 [=====>........................] - ETA: 2:34 - loss: 1.4464 - acc: 0.9087 864/3662 [======>.......................] - ETA: 2:32 - loss: 1.5980 - acc: 0.8993 896/3662 [======>.......................] - ETA: 2:30 - loss: 1.7568 - acc: 0.8895 928/3662 [======>.......................] - ETA: 2:28 - loss: 2.0263 - acc: 0.8728 960/3662 [======>.......................] - ETA: 2:27 - loss: 2.1434 - acc: 0.8656 992/3662 [=======>......................] - ETA: 2:25 - loss: 2.3017 - acc: 0.8558 1024/3662 [=======>......................] - ETA: 2:23 - loss: 2.3557 - acc: 0.8525 1056/3662 [=======>......................] - ETA: 2:21 - loss: 2.5133 - acc: 0.8428 1088/3662 [=======>......................] - ETA: 2:20 - loss: 2.6468 - acc: 0.8346 1120/3662 [========>.....................] - ETA: 2:18 - loss: 2.8590 - acc: 0.8214 1152/3662 [========>.....................] - ETA: 2:16 - loss: 2.9475 - acc: 0.8160 1184/3662 [========>.....................] - ETA: 2:14 - loss: 3.1265 - acc: 0.8049 1216/3662 [========>.....................] - ETA: 2:13 - loss: 3.2430 - acc: 0.7977 1248/3662 [=========>....................] - ETA: 2:11 - loss: 3.3794 - acc: 0.7893 1280/3662 [=========>....................] - ETA: 2:09 - loss: 3.4964 - acc: 0.7820 1312/3662 [=========>....................] - ETA: 2:07 - loss: 3.5831 - acc: 0.7767 1344/3662 [==========>...................] - ETA: 2:05 - loss: 3.7257 - acc: 0.7679 1376/3662 [==========>...................] - ETA: 2:04 - loss: 3.8030 - acc: 0.7631 1408/3662 [==========>...................] - ETA: 2:02 - loss: 3.8883 - acc: 0.7578 1440/3662 [==========>...................] - ETA: 2:00 - loss: 4.0369 - acc: 0.7486 1472/3662 [===========>..................] - ETA: 1:58 - loss: 4.0587 - acc: 0.7473 1504/3662 [===========>..................] - ETA: 1:56 - loss: 4.2081 - acc: 0.7380 1536/3662 [===========>..................] - ETA: 1:55 - loss: 4.2673 - acc: 0.7344 1568/3662 [===========>..................] - ETA: 1:53 - loss: 4.4167 - acc: 0.7251 1600/3662 [============>.................] - ETA: 1:51 - loss: 4.4895 - acc: 0.7206 1632/3662 [============>.................] - ETA: 1:49 - loss: 4.5694 - acc: 0.7157 1664/3662 [============>.................] - ETA: 1:48 - loss: 4.6074 - acc: 0.7133 1696/3662 [============>.................] - ETA: 1:46 - loss: 4.6916 - acc: 0.7081 1728/3662 [=============>................] - ETA: 1:44 - loss: 4.7726 - acc: 0.7031 1760/3662 [=============>................] - ETA: 1:42 - loss: 4.8415 - acc: 0.6989 1792/3662 [=============>................] - ETA: 1:40 - loss: 4.8810 - acc: 0.6964 1824/3662 [=============>................] - ETA: 1:39 - loss: 4.9279 - acc: 0.6935 1856/3662 [==============>...............] - ETA: 1:37 - loss: 4.9558 - acc: 0.6918 1888/3662 [==============>...............] - ETA: 1:35 - loss: 4.9828 - acc: 0.6901 1920/3662 [==============>...............] - ETA: 1:33 - loss: 4.9921 - acc: 0.6896 1952/3662 [==============>...............] - ETA: 1:32 - loss: 4.9846 - acc: 0.6901 1984/3662 [===============>..............] - ETA: 1:30 - loss: 5.0423 - acc: 0.6865 2016/3662 [===============>..............] - ETA: 1:28 - loss: 5.1062 - acc: 0.6825 2048/3662 [===============>..............] - ETA: 1:26 - loss: 5.1602 - acc: 0.6792 2080/3662 [================>.............] - ETA: 1:25 - loss: 5.1970 - acc: 0.6769 2112/3662 [================>.............] - ETA: 1:23 - loss: 5.2022 - acc: 0.6766 2144/3662 [================>.............] - ETA: 1:21 - loss: 5.2449 - acc: 0.6740 2176/3662 [================>.............] - ETA: 1:20 - loss: 5.2937 - acc: 0.6710 2208/3662 [=================>............] - ETA: 1:18 - loss: 5.3337 - acc: 0.6685 2240/3662 [=================>............] - ETA: 1:16 - loss: 5.3295 - acc: 0.6687 2272/3662 [=================>............] - ETA: 1:14 - loss: 5.3538 - acc: 0.6673 2304/3662 [=================>............] - ETA: 1:13 - loss: 5.3843 - acc: 0.6654 2336/3662 [==================>...........] - ETA: 1:11 - loss: 5.4072 - acc: 0.6640 2368/3662 [==================>...........] - ETA: 1:09 - loss: 5.4022 - acc: 0.6643 2400/3662 [==================>...........] - ETA: 1:08 - loss: 5.4510 - acc: 0.6613 2432/3662 [==================>...........] - ETA: 1:06 - loss: 5.4853 - acc: 0.6591 2464/3662 [===================>..........] - ETA: 1:04 - loss: 5.5188 - acc: 0.6571 2496/3662 [===================>..........] - ETA: 1:02 - loss: 5.5707 - acc: 0.6538 2528/3662 [===================>..........] - ETA: 1:01 - loss: 5.5958 - acc: 0.6523 2560/3662 [===================>..........] - ETA: 59s - loss: 5.6455 - acc: 0.6492 2592/3662 [====================>.........] - ETA: 57s - loss: 5.6691 - acc: 0.6478 2624/3662 [====================>.........] - ETA: 55s - loss: 5.7044 - acc: 0.6456 2656/3662 [====================>.........] - ETA: 54s - loss: 5.7631 - acc: 0.6419 2688/3662 [=====================>........] - ETA: 52s - loss: 5.7964 - acc: 0.6399 2720/3662 [=====================>........] - ETA: 50s - loss: 5.8467 - acc: 0.6368 2752/3662 [=====================>........] - ETA: 48s - loss: 5.8783 - acc: 0.6348 2784/3662 [=====================>........] - ETA: 47s - loss: 5.8918 - acc: 0.6340 2816/3662 [======================>.......] - ETA: 45s - loss: 5.9279 - acc: 0.6317 2848/3662 [======================>.......] - ETA: 43s - loss: 5.9405 - acc: 0.6310 2880/3662 [======================>.......] - ETA: 42s - loss: 5.9640 - acc: 0.6295 2912/3662 [======================>.......] - ETA: 40s - loss: 6.0037 - acc: 0.6271 2944/3662 [=======================>......] - ETA: 38s - loss: 6.0260 - acc: 0.6257 2976/3662 [=======================>......] - ETA: 36s - loss: 6.0370 - acc: 0.6250 3008/3662 [=======================>......] - ETA: 35s - loss: 6.0639 - acc: 0.6233 3040/3662 [=======================>......] - ETA: 33s - loss: 6.0743 - acc: 0.6227 3072/3662 [========================>.....] - ETA: 31s - loss: 6.0897 - acc: 0.6217 3104/3662 [========================>.....] - ETA: 29s - loss: 6.1048 - acc: 0.6208 3136/3662 [========================>.....] - ETA: 28s - loss: 6.1351 - acc: 0.6189 3168/3662 [========================>.....] - ETA: 26s - loss: 6.1443 - acc: 0.6184 3200/3662 [=========================>....] - ETA: 24s - loss: 6.1685 - acc: 0.6169 3232/3662 [=========================>....] - ETA: 23s - loss: 6.1822 - acc: 0.6160 3264/3662 [=========================>....] - ETA: 21s - loss: 6.1858 - acc: 0.6158 3296/3662 [==========================>...] - ETA: 19s - loss: 6.1991 - acc: 0.6150 3328/3662 [==========================>...] - ETA: 17s - loss: 6.2073 - acc: 0.6145 3360/3662 [==========================>...] - ETA: 16s - loss: 6.2729 - acc: 0.6104 3392/3662 [==========================>...] - ETA: 14s - loss: 6.2945 - acc: 0.6091 3424/3662 [===========================>..] - ETA: 12s - loss: 6.2875 - acc: 0.6095 3456/3662 [===========================>..] - ETA: 11s - loss: 6.3225 - acc: 0.6073 3488/3662 [===========================>..] - ETA: 9s - loss: 6.3431 - acc: 0.6061 3520/3662 [===========================>..] - ETA: 7s - loss: 6.3633 - acc: 0.6048 3552/3662 [============================>.] - ETA: 5s - loss: 6.4058 - acc: 0.6022 3584/3662 [============================>.] - ETA: 4s - loss: 6.3980 - acc: 0.6027 3616/3662 [============================>.] - ETA: 2s - loss: 6.4217 - acc: 0.6012 3648/3662 [============================>.] - ETA: 0s - loss: 6.4537 - acc: 0.5992 3662/3662 [==============================] - 200s 55ms/step - loss: 6.4730 - acc: 0.5980 Epoch 8/50 
$\endgroup$

1 Answer 1

1
$\begingroup$

I don't know anything about the data you're using so I'll offer some suggestions.

Your learning rate might be too high. Maybe you're over-shooting the gradient descent such that after you approach a nice vector of coefficients, you're then jumping too far in one epoch and thus losing progress towards the "global optima".

Your activation function might be saturating your units.

$\endgroup$
4
  • $\begingroup$ I am using a standard "un-trained" AlexNet CNN, and learning rate etc are the default Keras values. How can I check if I am saturating my units? $\endgroup$ Commented Apr 23, 2019 at 13:57
  • $\begingroup$ You can edit the default values. Lower the learning rate and try some of these activation functions: keras.io/layers/advanced-activations $\endgroup$ Commented Apr 23, 2019 at 14:07
  • $\begingroup$ You were right about the learning rate, that was the issue. Strange how default lr=0.01 was too fast. $\endgroup$ Commented Apr 26, 2019 at 15:41
  • $\begingroup$ Glad to hear it's $\endgroup$ Commented Apr 26, 2019 at 16:22

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.