I have applied simple forecasting models such as Naive Forecast, Moving Average, Simple Exponential Smoothing, Holts Linear Trend Model on 2018 sales data of a salesperson.
All the model resulted in flatten or prediction line flattens at zero. Could be it be an issue with data? as most of the data is flatten at zero.
model = ARIMA(train_log, order=(0, 1, 2)) output = model.fit(disp=-1) #convert fitted values in to series output_series=pd.Series(output.fittedvalues, copy=True) print(output_series.head()) #Calc Cumm sum output_series_cumsum= output_series.cumsum() print(output_series.head()) #Add cumsum values output_tr_log=pd.Series(train_log.ix[0],index=train_log.index) output_tr_log=output_tr_log.add(output_series_cumsum,fill_value=0) output_tr_log.head() #convert to predicted ARIMA vlaues to original format convert_output = np.exp(output_tr_log) plt.title('RMSE: %.4f'% (np.sqrt(np.dot(convert_output, train_log))/len(train_log)) Date Sales ---- ----- 2018-01-27 1 2018-01-30 60 2018-01-31 22 2018-02-01 490 2018-02-04 53 2018-02-05 30 2018-02-06 204 2018-02-07 234 2018-02-08 64 2018-02-10 70 2018-02-11 81 2018-02-12 10 2018-06-01 40 2018-06-02 669 2018-06-06 1188 2018-06-07 1250 2018-06-10 3861 2018-06-14 40 2018-06-21 44 


