During the training process of the convolutional neural network, the network outputs the training/validation accuracy/loss after each epoch as shown below:
Epoch 1/100 691/691 [==============================] - 2174s 3s/step - loss: 0.6473 - acc: 0.6257 - val_loss: 0.5394 - val_acc: 0.8258 Epoch 2/100 691/691 [==============================] - 2145s 3s/step - loss: 0.5364 - acc: 0.7692 - val_loss: 0.4283 - val_acc: 0.8675 Epoch 3/100 691/691 [==============================] - 2124s 3s/step - loss: 0.4341 - acc: 0.8423 - val_loss: 0.3381 - val_acc: 0.9024 Epoch 4/100 691/691 [==============================] - 2126s 3s/step - loss: 0.3467 - acc: 0.8880 - val_loss: 0.2643 - val_acc: 0.9267 Epoch 5/100 691/691 [==============================] - 2123s 3s/step - loss: 0.2769 - acc: 0.9202 - val_loss: 0.2077 - val_acc: 0.9455 Epoch 6/100 691/691 [==============================] - 2118s 3s/step - loss: 0.2207 - acc: 0.9431 - val_loss: 0.1654 - val_acc: 0.9575 Epoch 7/100 691/691 [==============================] - 2125s 3s/step - loss: 0.1789 - acc: 0.9562 - val_loss: 0.1348 - val_acc: 0.9663 Epoch 8/100 691/691 [==============================] - 2120s 3s/step - loss: 0.1472 - acc: 0.9655 - val_loss: 0.1117 - val_acc: 0.9719 Epoch 9/100 691/691 [==============================] - 2119s 3s/step - loss: 0.1220 - acc: 0.9728 - val_loss: 0.0956 - val_acc: 0.9746 Epoch 10/100 691/691 [==============================] - 2119s 3s/step - loss: 0.1037 - acc: 0.9774 - val_loss: 0.0828 - val_acc: 0.9781 Epoch 11/100 691/691 [==============================] - 2110s 3s/step - loss: 0.0899 - acc: 0.9806 - val_loss: 0.0747 - val_acc: 0.9793 Epoch 12/100 691/691 [==============================] - 2123s 3s/step - loss: 0.0785 - acc: 0.9835 - val_loss: 0.0651 - val_acc: 0.9825 Epoch 13/100 691/691 [==============================] - 2130s 3s/step - loss: 0.0689 - acc: 0.9860 - val_loss: 0.0557 - val_acc: 0.9857 Epoch 14/100 691/691 [==============================] - 2124s 3s/step - loss: 0.0618 - acc: 0.9874 - val_loss: 0.0509 - val_acc: 0.9869 Epoch 15/100 691/691 [==============================] - 2122s 3s/step - loss: 0.0555 - acc: 0.9891 - val_loss: 0.0467 - val_acc: 0.9876 Epoch 16/100 152/691 [=====>........................] - ETA: 22:10 - loss: 0.0515 - acc: 0.9892 My plan was to get the history variable and plot the accuracy/loss as follows:
history=model.fit_generator( .... ) plt.plot(history.history["acc"]) ... But my training just stopped due to some hardware issues. Therefore, the graphs were not plotted. But I have the log of 15 epochs as mentioned above. Can I plot the accuracy/loss graph from the above log?