*Memos:
- My post explains how to set and get dtype.
- My post explains how to set requires_grad and get grad.
- My post explains
keepdimargument. - My post explains
outargument. - My post explains
biasargument.
You can set and get device as shown below:
*Memos:
- I selected some popular
deviceargument functions such as tensor(), arange(), rand(), rand_like(), zeros() and zeros_like(). - Basically,
device(Optional-Default:None-Type:int,stror device()). - Basically, if
deviceisNone, it's inferred from other tensor or get_default_device() is used. *My post explainsget_default_device()and set_default_device(). -
cpu,cuda,ipu,xpu,mkldnn,opengl,opencl,ideep,hip,ve,fpga,ort,xla,lazy,vulkan,mps,meta,hpu,mtiaorprivateuseonecan be set todevice. - Setting
0todeviceusescuda(GPU). *The number must be zero or positive. - Basically,
device=must be needed. - My post explains device().
- str() can get a device value.
tensor(). *My post explains tensor():
import torch my_tensor = torch.tensor([0, 1, 2]) my_tensor = torch.tensor([0, 1, 2], device='cpu') my_tensor = torch.tensor([0, 1, 2], device=torch.device(device='cpu')) my_tensor = torch.tensor([0, 1, 2], device=torch.device(type='cpu')) my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0, 1, 2]), device(type='cpu'), 'cpu') my_tensor = torch.tensor([0, 1, 2], device='cuda:0') my_tensor = torch.tensor([0, 1, 2], device='cuda') my_tensor = torch.tensor([0, 1, 2], device=0) my_tensor = torch.tensor([0, 1, 2], device=torch.device(device='cuda:0')) my_tensor = torch.tensor([0, 1, 2], device=torch.device(device='cuda')) my_tensor = torch.tensor([0, 1, 2], device=torch.device(device=0)) my_tensor = torch.tensor([0, 1, 2], device=torch.device(type='cuda', index=0)) my_tensor = torch.tensor([0, 1, 2], device=torch.device(type='cuda')) my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0, 1, 2], device='cuda:0'), device(type='cuda', index=0), 'cuda:0') tensor() with is_available(). *My post explains is_available():
import torch my_device = "cuda:0" if torch.cuda.is_available() else "cpu" my_tensor = torch.tensor([0, 1, 2], device=my_device) my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0, 1, 2], device='cuda:0'), device(type='cuda', index=0), 'cuda:0') arange(). *My post explains arange():
import torch my_tensor = torch.arange(start=5, end=15, step=3, device='cpu') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([5, 8, 11, 14]), device(type='cpu'), 'cpu') my_tensor = torch.arange(start=5, end=15, step=3, device='cuda:0') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([5, 8, 11, 14], device='cuda:0'), # device(type='cuda', index=0), # 'cuda:0') rand(). *My post explains rand():
import torch my_tensor = torch.rand(size=(3,), device='cpu') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0.2782, 0.3780, 0.6509]), device(type='cpu'), 'cpu') my_tensor = torch.rand(size=(3,), device='cuda:0') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0.1052, 0.9281, 0.0151], device='cuda:0'), # device(type='cuda', index=0), # 'cuda:0') rand_like(). *My post explains rand_like():
import torch my_tensor = torch.rand_like(input=torch.tensor([7., 4., 5.]), device='cpu') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0.9130, 0.7072, 0.1935]), device(type='cpu'), 'cpu') my_tensor = torch.rand_like(input=torch.tensor([7., 4., 5.]), device='cuda:0') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0.3655, 0.6319, 0.3045], device='cuda:0'), # device(type='cuda', index=0), # 'cuda:0') zeros(). *My post explains zeros():
import torch my_tensor = torch.zeros(size=(3,), device='cpu') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0., 0., 0.]), device(type='cpu'), 'cpu') my_tensor = torch.zeros(size=(3,), device='cuda:0') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0., 0., 0.], device='cuda:0'), # device(type='cuda', index=0), # 'cuda:0') zeros_like(). *My post explains zeros_like():
import torch my_tensor = torch.zeros_like(input=torch.tensor([7., 4., 5.]), device='cpu') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0., 0., 0.]), device(type='cpu'), 'cpu') my_tensor = torch.zeros_like(input=torch.tensor([7., 4., 5.]), device='cuda:0') my_tensor, my_tensor.device, str(my_tensor.device) # (tensor([0., 0., 0.], device='cuda:0'), # device(type='cuda', index=0), # 'cuda:0')
Top comments (0)